Maria E Iolyeva

Learn More
Chemokines and adhesion molecules up-regulated in lymphatic endothelial cells (LECs) during tissue inflammation are thought to enhance dendritic cell (DC) migration to draining lymph nodes, but the in vivo control of this process is not well understood. We performed a transcriptional profiling analysis of LECs isolated from murine skin and found that(More)
The cytokine interleukin (IL)-7 exerts essential roles in lymph node (LN) organogenesis and lymphocyte development and homeostasis. Recent studies have identified lymphatic endothelial cells (LECs) as a major source of IL-7 in LNs. Here, we report that LECs not only produce IL-7, but also express the IL-7 receptor chains IL-7Rα and CD132. Stimulation with(More)
Nonhematopoietic stromal cells of secondary lymphoid organs form important scaffold and fluid transport structures, such as lymph node (LN) trabeculae, lymph vessels, and conduits. Furthermore, through the production of chemokines and cytokines, these cells generate a particular microenvironment that determines lymphocyte positioning and supports lymphocyte(More)
The lymphatic vascular system plays an important role in inflammation and cancer progression, although the molecular mechanisms involved are poorly understood. As determined by comparative transcriptional profiling studies of ex vivo isolated mouse intestinal lymphatic endothelial cells versus blood vascular endothelial cells, thymus cell antigen 1 (Thy1,(More)
Lymphatic vessels have traditionally been regarded as a rather inert drainage system, which just passively transports fluids, leukocytes and antigen. However, it is becoming increasingly clear that the lymphatic vasculature is highly dynamic and plays a much more active role in inflammatory and immune processes. Tissue inflammation induces a rapid,(More)
Adhesion molecules play an important role in vascular biology because they mediate vascular stability, permeability, and leukocyte trafficking to and from tissues. Performing microarray analyses, we have recently identified activated leukocyte cell adhesion molecule (ALCAM) as an inflammation-induced gene in lymphatic endothelial cells (LECs). ALCAM belongs(More)
We hypothesized that tissue-specific expression of cathepsin B-enhanced green fluorescent protein (CB-EGFP) can be driven by the A33-antigen promoter that contains positive cis-regulatory elements, including caudal-related homeobox (CDX) binding sites. The intestine-specific transcription factor Cdx1 is crucial for A33-antigen promoter activation and could(More)
Cathepsin B has been shown to not only reside within endo-lysosomes of intestinal epithelial cells, but it was also secreted into the extracellular space of intestinal mucosa in physiological and pathological conditions. In an effort to further investigate the function of this protease in the intestine, we generated a transgenic mouse model that would(More)
1Institute of Immunobiology, Kantonal Hospital St Gallen, St Gallen, Switzerland; 2Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom; 3Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland; 4Department of Hematology, Erasmus University Medical Center, Rotterdam,(More)
  • 1