Learn More
MHC class I molecules present peptides generated by processing of endogenously synthesized proteins to CD8+ T lymphocytes. Recently, large proteolytic complexes, termed proteasomes, were implicated in antigen processing. Two proteasomal subunits, LMP2 and LMP7, are encoded within the MHC class II region, but their precise role in antigen processing is(More)
The presentation of intracellular proteins to the immune system requires their degradation to small peptides that then become associated with major histocompatibility complex (MHC) class I molecules. The generation of these peptides may involve the 20S or 26S proteasome particles, which contain multiple proteolytic activities including distinct sites that(More)
Recent studies have implicated proteasomes in the generation of the antigenic peptides that are presented on major histocompatibility complex class I molecules to T lymphocytes. Interferon gamma modifies the subunit composition of proteasomes and causes changes in their peptidase activities that should favor the production of peptides with hydrophobic or(More)
The ubiquitin-proteasome pathway plays a crucial role in regulation of intracellular protein turnover. Proteasome, the central protease of the pathway, encompasses multi-subunit assemblies sharing a common catalytic core supplemented by regulatory modules and localizing to different subcellular compartments. To better comprehend age-related functions of the(More)
Proteolysis is essential for the execution of many cellular functions. These include removal of incorrectly folded or damaged proteins, the activation of transcription factors, the ordered degradation of proteins involved in cell cycle control, and the generation of peptides destined for presentation by class I molecules of the major histocompatibility(More)
The fast-track approval of a proteasome inhibitor, PS-341, to treat multiple myeloma spurred a wave of interest in both the proteasome itself and small-molecule compounds blocking its activities. Besides being candidates for drugs against cancer, autoimmune diseases, inflammation, or stroke, specific proteasome inhibitors are indispensable tools for(More)
Rapamycin is a canonical allosteric inhibitor of the mammalian tarpet of rapamycin (mTOR) kinase with immunosuppressive and proapoptotic activities. We found that in vitro rapamycin also regulates the proteasome, which is an essential intracellular protease of the ubiquitin-proteasome pathway. Rapamycin inhibits proteinase and selected peptidase activities(More)
The proteasome is a multicatalytic protease complex that plays a key role in diverse cellular functions. The peptide vinyl sulfone, carboxybenzyl-leucyl-leucyl-leucine vinyl sulfone (Z-L3VS) covalently inhibits the trypsin-like, chymotrypsin-like and, unlike lactacystin, also the peptidylglutamyl peptidase activity in isolated proteasomes, and blocks their(More)
The antibiotic lactacystin was reported to covalently modify beta-subunit X of the mammalian 20 S proteasome and inhibit several of its peptidase activities. However, we demonstrate that [3H]lactacystin treatment modifies all the proteasome's catalytic beta-subunits. Lactacystin and its more potent derivative beta-lactone irreversibly inhibit protein(More)
BACKGROUND Prostate tumors shed circulating tumor cells (CTCs) into the blood stream. Increased evidence shows that CTCs are often present in metastatic prostate cancer and can be alternative sources for disease profiling and prognostication. Here we postulate that CTCs expressing genes related to epithelial-mesenchymal transition (EMT) are strong(More)