Maria Daniela Candia Carnevali

Learn More
Crinoids are well known for their striking regenerative potential and can rapidly and completely regenerate arms lost following self-induced or traumatic amputation. Thus they provide a valuable experimental model for investigation of the regenerative process from the macroscopic to the molecular level. In these last years we have studied in detail the(More)
Regenerative phenomena, which have the advantage of reproducing developmental processes in the adult organism, are very sensitive to environmental stress and represent stages that can be monitored for damage at the whole-organism, cellular and molecular levels. Some persistent and ubiquitous pollutants, which can affect the natural environment because of(More)
Mutable collagenous tissues (MCTs) of echinoderms show reversible changes in tensile properties (mutability) that are initiated and modulated by the nervous system via the activities of cells known as juxtaligamental cells. The molecular mechanism underpinning this mechanical adaptability has still to be elucidated. Adaptable connective tissues are also(More)
Invertebrates have frequently been used to help understand the complexities of regulatory gene function and evolution. The bone morphogenetic proteins (BMPs) are a highly conserved group of secreted regulatory factors that play an important part in early embryonic patterning. In the present study we have used the remarkable regenerative potential of crinoid(More)
The study of regeneration in armed echinoderm species, including crinoids, ophiuroids and asteroids, is attracting increasing attention. Recent interest has focused on the presence and potential role of growth factors, including members of the nerve growth factor (NGF) and transforming growth factor-beta (TGF-beta) families, in the regenerative process and(More)
Collagen has become a key-molecule in cell culture studies and in the tissue engineering field. Industrially, the principal sources of collagen are calf skin and bones which, however, could be associated to risks of serious disease transmission. In fact, collagen derived from alternative and riskless sources is required, and marine organisms are among the(More)
The viscoelastic properties of vertebrate connective tissues rarely undergo significant changes within physiological timescales, the only major exception being the reversible destiffening of the mammalian uterine cervix at the end of pregnancy. In contrast to this, the connective tissues of echinoderms (sea urchins, starfish, sea cucumbers, etc.) can switch(More)
The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models(More)
The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the(More)
The regenerative phenomena that reproduce developmental processes in adult organisms and are regulated by endocrine and neurohumoral mechanisms can provide new sensitive tests for monitoring the effects of exposure to anthropogenic chemicals such as endocrine disrupter (ED) contaminants. These pollutants in fact can be bioaccumulated by the organisms,(More)