Learn More
Epithelial-to-mesenchymal transition (EMT) is a critical multistep process that converts epithelial cells to more motile and invasive mesenchymal cells, contributing to body patterning and morphogenesis during embryonic development. In addition, both epithelial plasticity and increased motility and invasiveness are essential for the branching morphogenesis(More)
Human Cripto-1 (CR-1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However, mechanisms that regulate CR-1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study, we investigated the effects of two nuclear receptors, liver receptor homolog(More)
Over the past few decades, our understanding of the embryonic gene Cripto-1 has considerably advanced through biochemical, cell biology, and animal studies. Cripto-1 performs key functions during embryonic development, while it dramatically disappears in adult tissues, except possibly in adult tissue stem cells. Cripto-1 is re-expressed in human tumors(More)
Cripto-1 is critical for early embryonic development and, together with its ligand Nodal, has been found to be associated with the undifferentiated status of mouse and human embryonic stem cells. Like other embryonic genes, Cripto-1 performs important roles in the formation and progression of several types of human tumors, stimulating cell proliferation,(More)
Several studies have shown that cell fate regulation during embryonic development and oncogenic transformation share common regulatory mechanisms and signaling pathways. Indeed, an embryonic gene member of the EGF-Cripto-1/FRL1/Cryptic family, Cripto-1, has been implicated in embryogenesis and in carcinogenesis. Cripto-1 together with the TGF-beta ligand(More)
Cripto-1 (CR-1)/Teratocarcinoma-derived growth factor1 (TDGF-1) is a cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein that can function either in cis (autocrine) or in trans (paracrine). The cell membrane cis form is found in lipid rafts and endosomes while the trans acting form lacking the GPI anchor is soluble. As a member of the(More)
Triple-negative breast cancer (TNBC) presents the poorest prognosis among the breast cancer subtypes and no current standard therapy. Here, we performed an in-depth molecular analysis of a mouse model that establishes spontaneous lung metastasis from JygMC(A) cells. These primary tumors resembled the triple-negative breast cancer (TNBC) both phenotypically(More)
Nodal and Notch signaling pathways play essential roles in vertebrate development. Through a yeast two-hybrid screening, we identified Notch3 as a candidate binding partner of the Nodal coreceptor Cripto-1. Coimmunoprecipitation analysis confirmed the binding of Cripto-1 with all four mammalian Notch receptors. Deletion analyses revealed that the binding of(More)
Cripto-1, a member of the epidermal growth factor-Cripto-1/FRL-1/Cryptic family, is critical for early embryonic development. Together with its ligand Nodal, Cripto-1 has been found to be associated with the undifferentiated status of mouse and human embryonic stem cells. Several studies have clearly shown that Cripto-1 is involved in regulating branching(More)
Cripto-1 (CR-1) is a multifunctional embryonic protein that is re-expressed during inflammation, wound repair, and malignant transformation. CR-1 can function either as a tethered co-receptor or shed as a free ligand underpinning its flexible role in cell physiology. CR-1 has been shown to mediate cell growth, migration, invasion, and induce epithelial to(More)