Maria Cristina Neves de Oliveira

Learn More
The development of drought tolerant plants is a high priority because the area suffering from drought is expected to increase in the future due to global warming. One strategy for the development of drought tolerance is to genetically engineer plants with transcription factors (TFs) that regulate the expression of several genes related to abiotic stress(More)
Soybean farming has faced several losses in productivity due to drought events in the last few decades. However, plants have molecular mechanisms to prevent and protect against water deficit injuries, and transcription factors play an important role in triggering different defense mechanisms. Understanding the expression patterns of transcription factors in(More)
Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation(More)
The loss of soybean yield to Brazilian producers because of a water deficit in the 2011-2012 season was 12.9%. To reduce such losses, molecular biology techniques, including plant transformation, can be used to insert genes of interest into conventional soybean cultivars to produce lines that are more tolerant to drought. The abscisic acid (ABA)-independent(More)
Steroid receptors have demonstrated to be potentially useful biological targets for the diagnosis and therapy follow-up of hormonally responsive cancers. The over-expression of these proteins in human cancer cells as well as their binding characteristics provides a favourable mechanism for the localization of malignant tumours. The need for newer and more(More)
Drought is one of the major factors limiting crop productivity worldwide. Currently, the techniques of genetic engineering are powerful tools for the development of drought-tolerant plants, once they allow for the modification of expression patterns of genes responsive to drought. Within this context, transcription factors recognize specific DNA sequences(More)
Among current strategies for the development of drought-tolerant plants, engineering transcription factors that regulate the expression of genes related to abiotic stress is promising. Soybean plants overexpressing the transcription factor AtAREB1, which is involved in abscisic acid (ABA)-dependent stress responses, were generated using biolistics. Embryos(More)
Field cage trials were carried out in Ponta Grossa, Paraná, season 2010/2011, aiming to characterize and evaluate the injury caused by Edessa meditabunda (F.), Chinavia impicticornis (Stål), and Piezodorus guildinii (West.) (Hemiptera: Pentatomidae) to soybean. Non-infested plants were compared with infested plants with 2 and 3 adults/m (number of adult(More)
Aiming to apply the multivalency concept to melanoma imaging, we have assessed the in vivo melanocortin type 1 receptor (MC1R)-targeting properties of 99mTc(I)-labeled homobivalent peptide conjugates which contain copies of the α-melanocyte-stimulating hormone (α-MSH) analog [Ac-Nle4, Asp5, d-Phe7, Lys11]α-MSH4–11 separated by linkers of different length (L(More)
A new family of 99mTc(I)- tricarbonyl complexes and 125I-heteroaromatic compounds bearing an acridine orange (AO) DNA targeting unit was evaluated for Auger therapy. Characterization of the DNA interaction, performed with the non-radioactive Re and 127I congeners, confirmed that all compounds act as DNA intercalators. Both classes of compounds induce double(More)