Learn More
The oxidation of cytochrome f by the soluble cupredoxin plastocyanin is a central reaction in the photosynthetic electron transfer chain of all oxygenic organisms. Here, two different computational approaches are used to gain new insights into the role of molecular recognition and protein-protein association processes in this redox reaction. First, a(More)
Two series of glasses of general formula (2-p) SiO2.1.1Na2O.CaO.pP2O5.xZnO (p=0.10, 0.20; x=0.0, 0.16, 0.35, and 0.78) have been analyzed for physico-chemical surface features before and after contact with simulated body fluid, morphological characteristics, and osteoblast-like cells behavior when cultured on them. The resulted good cell adhesion and(More)
Theoretical descriptors obtained from quantum mechanical calculations on isolated ligands in different media and molecular dynamics simulations of ligand-enzyme complexes have been used to obtain a quantitative rationalization of the inhibition of CYP1A2 and CYP1A2 by three series of flavonoids. Predictive models obtained through one-descriptor QSAR studies(More)
Blue copper proteins are type-I copper-containing redox proteins whose role is to shuttle electrons from an electron donor to an electron acceptor in bacteria and plants. A large amount of experimental data is available on blue copper proteins; however, their functional characterization is hindered by the complexity of redox processes in biological systems.(More)
Novel arylpiperazine derivatives bearing lipophilic probes were designed, synthesized, and evaluated for their potential ability to interact with the 5-hydroxytryptamine(3) (5-HT(3)) receptor. Most of the new compounds show subnanomolar 5-HT(3) receptor affinity. Ester 6bc showing a picomolar K(i) value is one of the most potent 5-HT(3) receptor ligands so(More)
Molecular mechanics methods have been applied to study the interaction between a series of 20 deprotonated benzenesulfonamides and the enzyme carbonic anhydrase. The different contributions to the binding energy have been evaluated and correlated with experimental inhibition data and molecular orbital indices of the sulfonamides in their bound conformation.(More)
Novel conformationally constrained derivatives of classical 5-HT(3) receptor antagonists were designed and synthesized with the aim of probing the central 5-HT(3) receptor recognition site in a systematic way. The newly-synthesized compounds were tested for their potential ability to inhibit [(3)H]granisetron specific binding to 5-HT(3) receptor in rat(More)
Three-dimensional models of the cytochromes P450 IA2, P450 IID6 and P450 IIIA4 were built by means of comparative modeling using the X-ray crystallographic structures of P450 CAM, P450 BM-3, P450 TERP and P450 ERYF as templates. The three cytochromes were analyzed both in their intrinsic structural features and in their interaction properties with fifty(More)
The synthetic-computational approach to the study of the binding site of peripheral benzodiazepine receptor (PBR) ligands related to 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195, 1) within their receptor (Cappelli et al. J. Med. Chem. 1997, 40, 2910-2921) has been extended. A series of carboxamide derivatives endowed(More)