Maria Cristina C. Cunha

Learn More
We present a numerical scheme, based on Godunov's method (REA algorithm), for the variance of the solution of the 1D random linear transport equation, with homogeneous random velocity and random initial condition. We obtain the stability conditions of the method and we also show its consistency with a deterministic nonhomogeneous advective-diffusive(More)
We solve Burgers' equation with random Riemann initial conditions. The closed solution allows simple expressions for its statistical moments. Using these ideas we design an efficient algorithm to calculate the statistical moments of the solution. Our methodology is an alternative to the Monte Carlo method. The present approach does not demand a random(More)
This paper deals with a numerical scheme to approximate the mth moment of the solution of the one-dimensional random linear transport equation. The initial condition is assumed to be a random function and the transport velocity is a random variable. The scheme is based on local Riemann problem solutions and Godunov's method. We show that the scheme is(More)
Various aspects of the parasitims of caterpillars ofAscia monuste orseis byCotesia ayerzai, were studied in laboratory choice tests. Individual ♂♂ were found to be extremely variable in ovipositional duration, as well as in the number of eggs oviposited. To simulate parasitoid dispersal, or low host density, we isolated ♂♂ for 60 min following initial(More)
The knowledge on diet composition of the freshwater mussel Diplodon enno (Ortmann) would aid in its culture and propagation allowing, this way, the replacement of natural endangered populations in Brazil. Microalgae are the main food source for captive mussels and unionids have displayed an ability to sort algae based on the cellular characteristics prior(More)
We present a formula to calculate the probability density function to the solution of the random linear transport equation in terms of the density functions of the velocity and the initial condition. We also present an expression to the joint probability density function of the solution in two different points. Our results have shown good agreement with(More)
  • 1