Learn More
UNLABELLED True ictal SPECT can accurately demonstrate perfusion increases in the epileptogenic area but often requires dedicated personnel waiting at the bedside to accomplish the injection. We investigated the value of perfusion changes as measured by ictal or immediate postictal SPECT in localizing the epileptogenic region in refractory partial epilepsy.(More)
PURPOSE Statistical parametric mapping (SPM) is an image-analysis tool that assesses the statistical significance of cerebral blood flow (CBF) changes on a voxel-by-voxel basis, thereby removing the subjectivity inherent in conventional region-of-interest (ROI) analysis. Our platform of single-photon emission computed tomography (SPECT) ictal-interictal(More)
Increased regional cerebral blood flow (rCBF) at the epileptogenic site has been consistently reported for single photon emission computed tomography (SPECT) injections made during seizure activity, and the increased rCBF has been shown to remain elevated at the epileptogenic site in some cases, even when SPECT injections are made after seizure termination(More)
Single-photon emission tomography (SPET) brain imaging in epilepsy has become an increasingly important noninvasive tool in localizing the epileptogenic site. Ictal SPET demonstrates the highest localization sensitivity as compared with postictal and interictal SPET. While ictal SPET consistently reveals hyperperfusion at the epileptogenic site, postictal(More)
The amplitude of the acoustic startle response is increased when elicited in the presence of brief cues that predict shock (fear-potentiated startle) and also when elicited during sustained exposure to bright light (light-enhanced startle). Although both effects are thought to reflect fear or anxiety, their neuroanatomical substrates differ. Although(More)
Nonepileptic seizures may represent difficult diagnostic problems. Identifying their presence and frequency is critical for determining appropriate treatment. The authors investigated the value of quantitative perfusion changes as measured by ictal single-photon emission tomography (SPECT) difference images in differentiating nonepileptic from epileptic(More)
By digitally computing perfusion changes from ictal or postictal (peri-ictal) injections referenced to those acquired interictally, an enhanced method for localizing the epileptogenic area is reported. Computer-based image processing methods for quantifying regional percent change in the brain are applied to a group of 19 epilepsy patients after the(More)
PURPOSE Image processing techniques were applied to interictal positron emission tomography (PET) and single-photon emission computed tomography (SPECT) brain images to aid in the localization of epileptogenic foci by calculating a functional image that represents the degree of coupling between perfusion and metabolism. Uncoupling of these two functions has(More)
Peri-ictal single-photon emission tomography (SPET) difference images co-registered to magnetic resonance imaging (MRI) visualize regional cerebral blood flow (rCBF) changes and help localize the epileptogenic area in medically refractory epilepsy. Few reports have examined the reproducibility of SPET difference image results. Epilepsy patients having two(More)
PURPOSE Factors affecting blood flow observed by interictal single-photon emission computed tomography (SPECT) images in temporal lobe epilepsy (TLE) have not been systematically studied or consistently demonstrated. We evaluated interictal SPECT results with respect to many clinical variables in a large population of TLE patients, all of whom underwent(More)