Maria Angelica Cortez

Learn More
Dystrophin transcripts were shown to be alternatively spliced in a pattern characteristic of both tissue type and developmental stage. Multiple novel spliced forms of dystrophin mRNA were identified in murine brain tissue, skeletal and cardiac muscle, diaphragm, and human cardiac Purkinje fibers. The transcript diversity was greatest in adult, non-skeletal(More)
Since the discovery of microRNAs (miRNAs), the study of these small noncoding RNAs has steadily increased and more than 10,000 papers have already been published. The great interest in miRNAs reflects their central role in gene-expression regulation and the implication of miRNA-specific aberrant expression in the pathogenesis of cancer, cardiac,(More)
Immunosuppression of tumour-infiltrating lymphocytes (TIL) is a common feature of advanced cancer, but its biological basis has remained obscure. We demonstrate here a molecular link between epithelial-to-mesenchymal transition (EMT) and CD8(+) TIL immunosuppression, two key drivers of cancer progression. We show that microRNA-200 (miR-200), a(More)
Glioblastoma is the most frequent and malignant brain tumor, characterized by an elevated capacity for cellular proliferation and invasion. Recently, it was demonstrated that podoplanin membrane sialo-glycoprotein encoded by PDPN gene is over-expressed and related to cellular invasion in astrocytic tumors; however the mechanisms of regulation are still(More)
BACKGROUND Although clinical studies have shown promise for targeting PD1/PDL1 signaling in non-small cell lung cancer (NSCLC), the regulation of PDL1 expression is poorly understood. Here, we show that PDL1 is regulated by p53 via miR-34. METHODS p53 wild-type and p53-deficient cell lines (p53(-/-) and p53(+/+) HCT116, p53-inducible H1299, and(More)
The c-Met/hepatocyte growth factor receptor and its family members are known to promote cancer cell migration and invasion. Signaling within and beyond this pathway contributes to the systemic spread of metastases through induction of the epithelial-mesenchymal transition, a process also implicated in mediating resistance to current anticancer therapies,(More)
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression at the posttranscriptional level by degrading or blocking translation of messenger RNA (mRNA) targets. MiRNAs play important regulatory roles in a variety of cellular functions as well as in several diseases, including cancer. MiRNA-specific expression profiles have been(More)
Radiation therapy controls local disease but also prompts the release of tumor-associated antigens and stress-related danger signals that primes T cells to promote tumor regression at unirradiated sites known as the abscopal effect. This may be enhanced by blocking inhibitory immune signals that modulate immune activity through a variety of mechanisms.(More)
The microRNA (miR)-200s and their negative regulator ZEB1 have been extensively studied in the context of the epithelial-mesenchymal transition. Loss of miR-200s has been shown to enhance cancer aggressiveness and metastasis, whereas replacement of miR-200 miRNAs has been shown to inhibit cell growth in several types of tumors, including lung cancer. Here,(More)
UNLABELLED The molecular underpinnings that drive the heterogeneity of KRAS-mutant lung adenocarcinoma are poorly characterized. We performed an integrative analysis of genomic, transcriptomic, and proteomic data from early-stage and chemorefractory lung adenocarcinoma and identified three robust subsets of KRAS-mutant lung adenocarcinoma dominated,(More)