Learn More
Retinal ganglion cells send visual and circadian information to the brain regarding the environmental light-dark cycles. We investigated the capability of retinal ganglion cells of synthesizing melatonin, a highly reliable circadian marker that regulates retinal physiology, as well as the capacity of these cells to function as autonomous circadian(More)
Daily and annual changes in ambient illumination serve as specific stimuli that associate light with time and regulate the physiology of the organism through the eye. The eye acts as a dual sense organ linking light and vision, and detecting light that provides specific stimuli for non-classical photoreceptors located in the inner retina. These(More)
Prebilaterian animals perceived ambient light through nonvisual rhabdomeric photoreceptors (RPs), which evolved as support of the chordate visual system. In vertebrates, the identity of nonvisual photoreceptors and the phototransduction cascade involved in nonimage forming tasks remain uncertain. We investigated whether chicken retinal ganglion cells (RGCs)(More)
PURPOSE In vertebrates, intrinsically photosensitive retinal ganglion cells (ipRGCs) acting as nonvisual photoreceptors transmit environmental illumination information to the brain, regulating diverse non-image-forming tasks. The phototransduction cascade in chicken ipRGCs has been shown to resemble that of rhabdomeric photoreceptors and involves(More)
PURPOSE Retinal ganglion cells (RGCs) expressing the photopigment melanopsin (Opn4) display intrinsic photosensitivity. In this study, the presence of nonvisual phototransduction cascade components in the developing chicken retina and primary RGCs cultures was investigated, focusing on the two Opn4 genes: the Xenopus (Opn4x) and the mammalian (Opn4m)(More)
PURPOSE Retinal degeneration caused by a defect in the phototransduction cascade leads to the apoptosis of photoreceptor cells, although the precise molecular mechanism is still unknown. In addition, constant low light exposure produces photoreceptor cell death through the activation of downstream phototransduction. The authors investigated the time course(More)
The retina is a key component of the vertebrate circadian system; it is responsible for detecting and transmitting the environmental illumination conditions (day/night cycles) to the brain that synchronize the circadian clock located in the suprachiasmatic nucleus (SCN). For this, retinal ganglion cells (RGCs) project to the SCN and other nonvisual areas.(More)
The present study demonstrates that the biosynthesis of phospholipids in the inner nuclear layer cells of the chicken retina displays daily rhythms under constant illumination conditions. The vertebrate retina contains circadian oscillators and photoreceptors (PRCs) that temporally regulate its own physiology and synchronize the whole organism to the daily(More)
The association of tubulin carboxypeptidase with microtubules has been demonstrated in crude brain extracts and in living non-nervous cells. Here, we studied this phenomenon in cultured brain cells. To determine the association of the enzyme with neural microtubules we isolated the cytoskeletons (detergent-extraction under microtubule-stabilizing(More)
  • 1