Learn More
Kinesin-1 is a two-headed molecular motor that walks along microtubules, with each step gated by adenosine triphosphate (ATP) binding. Existing models for the gating mechanism propose a role for the microtubule lattice. We show that unpolymerized tubulin binds to kinesin-1, causing tubulin-activated release of adenosine diphosphate (ADP). With no added(More)
Recent studies have shown that the targeting of substrate adhesions by microtubules promotes adhesion site disassembly (Kaverina, I., O. Krylyshkina, and J.V. Small. 1999. J. Cell Biol. 146:1033-1043). It was accordingly suggested that microtubules serve to convey a signal to adhesion sites to modulate their turnover. Because microtubule motors would be the(More)
Cryo-electron microscopy and 3D image reconstruction of microtubules saturated with kinesin dimers has shown one head bound to tubulin, the other free. The free head of rat kinesin sits on the top right of the bound head (with the microtubule oriented plus-end upwards) in the presence of 5'-adenylylimido-diphosphate (AMPPNP) and on the top left in(More)
Kinesin-1 is a molecular transporter that trafficks along microtubules. There is some evidence that kinesin-1 targets specific cellular sites, but it is unclear how this spatial regulation is achieved. To investigate this process, we used a combination of in vivo imaging of kinesin heavy-chain Kif5c (an isoform of kinesin-1) fused to GFP, in vitro analyses(More)
We present a new map showing dimeric kinesin bound to microtubules in the presence of ADP that was obtained by electron cryomicroscopy and image reconstruction. The directly bound monomer (first head) shows a different conformation from one in the more tightly bound empty state. This change in the first head is amplified as a movement of the second(More)
The hand-over-hand stepping mechanism of kinesin at low loads is inadequately understood because the number of molecular steps taken per encounter with the microtubule is difficult to measure: optical traps do not register steps at zero load, while evanescent wave microscopy of single molecules of GFP-kinesin suffers from premature photobleaching. Obtaining(More)
The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been(More)
Regulatory elements in genetic data are often short and variable, their identification and discovery using computational algorithms is difficult. A model based on communication theory concepts and used by Dawy, et al., [1], is used to model the process of translation in gene expression. The model assumes the ribosome decodes the mRNA sequence by using the(More)
Detecting and modeling urban furniture are of particular interest for urban management and the development of autonomous driving systems. This paper presents a novel method for detecting and classifying vertical urban objects and trees from unstructured three-dimensional mobile laser scanner (MLS) or terrestrial laser scanner (TLS) point cloud data. The(More)
Bodies of water, particularly swimming pools, are land covers of high interest. Their maintenance involves energy costs that authorities must take into consideration. In addition, swimming pools are important water sources for firefighting. However, they also provide a habitat for mosquitoes to breed, potentially posing a serious health threat of(More)