Learn More
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a ubiquitous tetrapeptide hydrolyzed almost exclusively by angiotensin-converting enzyme (ACE). Chronic treatment with Ac-SDKP decreases cardiac and renal fibrosis and inflammatory cell infiltration in hypertensive rats. However, very little is known about endogenous synthesis of Ac-SDKP, except that(More)
Using B(2) kinin receptor gene knockout mice (B(2)(-/-)), we tested the hypothesis that (l) lack of B(2) receptors may affect blood pressure and cardiac function and aggravate cardiac remodeling after myocardial infarction (MI), and (2) kinins partially mediate the cardiac beneficial effect of angiotensin-converting enzyme inhibitors (ACEi) or angiotensin(More)
Fibrosis, which is defined as excessive accumulation of fibrous connective tissue, contributes to the pathogenesis of numerous diseases involving diverse organ systems. Cardiac fibrosis predisposes individuals to myocardial ischemia, arrhythmias and sudden death, and is commonly associated with diastolic dysfunction. Histone deacetylase (HDAC) inhibitors(More)
Chronic cardiac hypertrophy is maladaptive and contributes to the pathogenesis of heart failure. The objective of this study was to identify small molecule inhibitors of pathological cardiomyocyte hypertrophy. High content screening was performed with primary neonatal rat ventricular myocytes (NRVMs) cultured on 96-well plates and treated with a library of(More)
There are conflicting data about gender differences in cardiac function after myocardial infarction (MI), including cardiac rupture and mortality. Using a mouse model of MI, we recently found that the cardiac rupture rate during the first week after MI was significantly lower in females than in males, suggesting that females have attenuated structural(More)
There is convincing evidence that chronic treatment with N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a peptide normally found in tissues and biological fluids, reduces collagen deposition in the heart and kidneys of hypertensive rats and rats with myocardial infarction. However, it is not known whether endogenous Ac-SDKP at basal concentrations has any(More)
Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models of heart failure. The efficacious compounds target class I, class IIb and, to a lesser extent, class IIa HDACs. It is hypothesized that a selective inhibitor of a specific HDAC class (or an isoform within that class) will provide a favorable therapeutic(More)
Cardiac rupture can be fatal after myocardial infarction (MI). Experiments in animals revealed gender differences in rupture rate; however, patient data are controversial. We found a significantly higher rupture rate in testosterone-treated female mice within 1 wk after MI, whereas castration in males significantly reduced rupture. We hypothesized that(More)
Angiotensin II (Ang II)-induced hypertension is associated with an inflammatory response that may contribute to the development of target organ damage. We tested the hypothesis that, in Ang II-induced hypertension, CC chemokine receptor 2 (CCR2) activation plays an important role in the development of renal fibrosis, damage, and dysfunction by causing(More)
We previously found that male mice with myocardial infarction (MI) had a high rate of cardiac rupture, which generally occurred at 3 to 5 days after MI. Since matrix metalloproteinases (MMPs) play an important role in infarct healing, tissue repair and extracellular matrix (ECM) remodeling post-MI, we studied the temporal relationship of MMP expression and(More)