Maria A Aleksandrova

Learn More
Human neural stem/progenitor cells provide a useful tool for studies of neural development and differentiation, as well as a potential means for neuroreplacement therapeutic needs in the human CNS. Stem cells isolated from developing human central nervous system of 8-12-week fetuses were transplanted to the forebrain and cerebellum of young and adult rats(More)
Immunoperoxidase and molecular genetic analysis showed that retinal pigment epithelial cells from adult human eye undergo morphogenetic changes in vitro. They lose expression of tissuespecific protein RPE65 and start to express stem cell markers: Oct4 (POU5F1), Nanog, Prox1, Musashi 1, and Pax6, which indicates their differentiation. Expression of Musashi 1(More)
Phenotypic plasticity of retinal pigment epithelial cells from adult human eye was studied by immunohistochemical methods under different culturing conditions. It was found that retinal pigment epithelium in adult human eye is a heterogeneous population of cells demonstrating different behavior in vitro. Some cells retain epithelial morphology for a long(More)
Induced pluripotent stem (iPS) cells can be derived from a wide range of somatic cells via overexpression of a set of specific genes. With respect to their properties, iPS cells closely resemble embryonic stem cells. Because of their main property, pluripotency, iPS cells have excellent prospects for use in substitutive cell therapy; however, the methods of(More)
The retinal pigment epithelium (RPE) plays a key role in the development of many eye diseases leading to visual impairment and even blindness. Cell culture models of pathological changes in the RPE make it possible to study factors responsible for these changes and signaling pathways coordinating cellular and molecular mechanisms of cell interactions under(More)
Neural stem cells of human brain were cultured for a long time and successfully transplanted into the brain of rats exposed to acute hypoxia. Stem and committed cells, neuroblasts, and astrocytes were revealed in transplants by immunohistochemical assay. The transplants and brain tissue were not separated with a glial barrier. Human neuroblasts widely(More)
Human recombinant protein Wnt7a (hrWnt7a) inhibits cell proliferative activity and triggers cell polarization. Although cell polarization process was maintained only over a short time, probably via microenvironmental stimuli, hrWnt7a is involved in the transformation of the retinal pigment epithelium. Analysis of Wnt signaling pathway and its regulation(More)
Human neural stem cells (HNSCs) are used in studies of neural development and differentiation, and are regarded as an alternative source of tissue for neural transplantation in degenerative diseases. Selection and standardization of HNSC samples is an important task in research and clinical approaches. We evaluated embryonal brain matter obtained from human(More)
The aim of the present work was to study human neural stem/progenitor cells (SPC) cultured in vitro and their potential to survive, migrate, and differentiate after transplantation into adult rat brain. SPC were extracted from the brains of nine-week human embryos and were cultured in selective medium for three weeks. Transplantation was with suspensions of(More)