Learn More
The majority of land plants acquire soil nutrients, such as phosphorus and nitrogen, not only through the root surface but also through arbuscular mycorrhizal (AM) fungi. Soybean is the most important leguminous crop in the world. We found 16 ammonium transporter genes in the soybean genome, five of which are AM inducible. Among them, promoter-reporter(More)
The initiation of intracellular infection of legume roots by symbiotic rhizobia bacteria and arbuscular mycorrhiza (AM) fungi is preceded by the induction of calcium signatures in and around the nucleus of root epidermal cells. Although a calcium and calmodulin-dependent kinase (CCaMK) is a key mediator of symbiotic root responses, the decoding of the(More)
Arbuscular mycorrhizal (AM) fungi inhabit the root cortical cells of most plants and obtain photosynthates from the host plants while they transfer mineral nutrients from the soil to the hosts. In this review, we first summarize recent progress regarding signal molecules involved in the recognition of each symbiont, the signaling pathways in the host(More)
In legumes, Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is a component of the common symbiosis genes that are required for both root nodule (RN) and arbuscular mycorrhiza (AM) symbioses and is thought to be a decoder of Ca(2+) spiking, one of the earliest cellular responses to microbial signals. A gain-of-function mutation of CCaMK has been shown to(More)
To better understand the molecular responses of plants to arbuscular mycorrhizal (AM) fungi, we analyzed the differential gene expression patterns of Lotus japonicus, a model legume, with the aid of a large-scale cDNA macroarray. Experiments were carried out considering the effects of contaminating microorganisms in the soil inoculants. When the(More)
Endosymbiotic infection of legume plants by Rhizobium bacteria is initiated through infection threads (ITs) which are initiated within and penetrate from root hairs and deliver the endosymbionts into nodule cells. Despite recent progress in understanding the mutual recognition and early symbiotic signaling cascades in host legumes, the molecular mechanisms(More)
A full-length cDNA for squalene synthase was isolated from Lotus japonicus, a model leguminous plant. The transcript was abundant in roots, symbiotic root nodules, and shoots, in that order. In situ hybridization revealed that the mRNA level is high in expanding root cells but low in dividing root tip ones. The transcript is also abundant in vascular(More)
Mesorhizobium loti and Rhizobium etli are microsymbionts of the Lotus and Phaseolus spp., respectively, and secrete essentially the same Nod factors. Lotus japonicus efficiently formed root nodules with R. etli CE3, irrespective of the presence or absence of a flavonoid-independent transcription activator nodD gene. On a nitrogen-free medium, however, the(More)
Knowledge about signaling in arbuscular mycorrhizal (AM) symbioses is currently restricted to the common symbiosis (SYM) signaling pathway discovered in legumes. This pathway includes calcium as a second messenger and regulates both AM and rhizobial symbioses. Both monocotyledons and dicotyledons form symbiotic associations with AM fungi, and although they(More)
GmPT7 was originally identified as an arbuscular mycorrhiza-inducible gene of soybean that encodes a member of subfamily I in the PHOSPHATE TRANSPORTER 1 family. In the present study, we established conditions under which a number of dwarf soybean plants complete their life cycles in a growth chamber. Using this system, we grew transgenic soybean with a(More)