Margot Grandl

Learn More
Monocytes are precursors of macrophages. Here we demonstrate that macrophage colony-stimulating factor (M-CSF)-dependent differentiation of primary human monocytes from healthy volunteers induces transcription of SREBP-1c target genes required for fatty acid (FA) biosynthesis and impairs transcription of SREBP-2 target genes required for cholesterol(More)
Hyperlipidemias and small dense LDLs in patients with high-triglyceride low-HDL syndromes lead to a prolonged half life of apoB-containing particles. This is associated with reactive oxygen species (ROS) activation and leads to formation of oxidized LDL (Ox-LDL). Generators of ROS in macrophages (MACs) include myeloperoxidase (MPO)-mediated respiratory(More)
Vitamin A and its naturally occurring derivatives 9-cis retinoic acid (9-cis RA) and all-trans retinoic acid (ATRA) exert a variety of biological effects including immunomodulation, growth, differentiation, and apoptosis of normal and neoblastic cells. In order to directly study the effects of these retinoids on macrophage gene expression and lipid(More)
The ATP-binding cassette transporter A1 (ABCA1) facilitates the cellular release of cholesterol and choline-phospholipids to apolipoprotein A-I (apoA-I) and several studies indicate that vesicular transport is associated with ABCA1 function. Syntaxins play a major role in vesicular fusion and have also been demonstrated to interact with members of the(More)
This review summarizes the current knowledge of endolysosomal and cytoplasmic lipid storage in macrophages induced by oxidized LDL (Ox-LDL), enzymatically degraded LDL (E-LDL) and other atherogenic lipoprotein modifications, and their relation to the adapter protein 3 (AP-3) dependent ABCA1 and ABCG1 cellular lipid efflux pathways. We compare endolysosomal(More)
The analysis of high-throughput gene expression data sets derived from microarray experiments still is a field of extensive investigation. Although new approaches and algorithms are published continuously, mostly conventional methods like hierarchical clustering algorithms or variance analysis tools are used. Here we take a closer look at independent(More)
Uptake of modified lipoproteins by macrophages causes foam cell formation and promotes atherosclerosis. Atherogenic lipoproteins are cytotoxic and induce cell death under certain conditions but may also enhance macrophage survival. Macrophages treated with enzymatically modified LDL (E-LDL) were subjected to GeneChip analysis and the antiapoptotic gene TOSO(More)
Recruitment of circulating monocytes and formation of macrophage foam cells in the arterial intima are characteristic features of atherogenesis. Foam cells are formed by cellular uptake and storage of atherogenic lipoproteins, including oxidized LDL (oxLDL) and enzymatically modified LDL (eLDL). Dissection of oxLDL- and eLDL-induced cellular phenotypes(More)
PURPOSE OF REVIEW Lipid membrane microdomains are involved in major types of disease, ranging from vascular and metabolic diseases to neurodegeneration, autoimmunity, infectious and inflammatory diseases, and cancer. This review provides an update of membrane microdomain abnormalities. RECENT FINDINGS Lipid membrane microdomains are dynamic assemblies of(More)
Macrophage foam cells formed during uptake of atherogenic lipoproteins are a hallmark of atherosclerotic lesion development. In this study, human macrophages were incubated with two prototypic atherogenic LDL modifications enzymatically degraded LDL (E-LDL) and oxidized LDL (Ox-LDL) prepared from the same donor LDL. To detect differences in macrophage lipid(More)