Margarita Zeichner-David

Learn More
During tooth development, after the completion of crown formation, the apical mesenchyme forms the developing periodontium while the inner and outer enamel epithelia fuse below the level of the crown cervical margin to produce a bilayered epithelial sheath termed Hertwig's epithelial root sheath (HERS). The role of HERS cells in root formation is widely(More)
We have established the time and position of expression for multiple enamel proteins during the development of the mouse molar tooth organ. Using high-resolution two-dimensional gel electrophoresis coupled with immunoblotting and immunocytochemistry, a 46-kDa enamel protein (pI, 5.5) was detected during late cap stage (18-days gestation, E18d) within(More)
Enamel is the unique and highly mineralized extracellular matrix that covers vertebrate teeth. Amelogenin proteins represent the predominate subfamily of gene products found in developing mammalian enamel, and are implicated in the regulation of the formation of the largest hydroxyapatite crystals in the vertebrate body. Previous attempts to isolate, purify(More)
The mammalian tooth forms by a series of reciprocal epithelial-mesenchymal interactions. Although several signaling pathways and transcription factors have been implicated in regulating molar crown development, relatively little is known about the regulation of root development. Four genes encoding nuclear factor I (NFI) transcription-replication proteins(More)
The developmental problem of how dental epithelia and/or dental papilla ectomesenchyme induce and/or up- or down-regulate tooth formation are as yet unresolved issues. We have designed studies to map the synthesis and fate pathways of secreted amelogenin proteins from Kallenbach differentiation zones II-IV during in vivo and in vitro mouse mandibular first(More)
The determination of the biochemical phenotype of tooth epithelium requires specification by the dental mesenchyme. This is a general feature of epithelial-mesenchymal interaction in a number of different epidermal organ systems (e.g., salivary gland, mammary gland, feather, skin, and hair morphogenesis). To investigate these developmental processes, we(More)
Cementum is a unique mineralized connective tissue that covers the root surfaces of the teeth. The cementum is critical for appropriate maturation of the periodontium, both during development as well as that associated with regeneration of periodontal tissues, IU; however, one major impediment to understand the molecular mechanisms that regulate periodontal(More)
This review highlights a number of advances towards understanding the sequential developmental cascade of events beginning in the oral ectodermally-derived odontogenic placode and culminating in the formation of the mineralized enamel extracellular matrix. Recent discoveries of growth factors, growth factor receptors and transcription factors associated(More)
Virtually all types of periodontal disease are caused by periodontal pocket infections, although several other factors, including trauma, aging, systemic diseases, genetics, etc., can contribute to the destruction of the periodontium (1, 18, 31, 52, 60, 107, 128, 127, 194). Repair of the periodontium and the regeneration of periodontal tissues remains a(More)