Learn More
The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been(More)
Glycerol is catabolized by a wide range of microorganisms including Aspergillus species. To identify the transcriptional regulation of glycerol metabolism in Aspergillus, we analyzed data from triplicate batch fermentations of three different Aspergilli (Aspergillus nidulans, Aspergillus oryzae and Aspergillus niger) with glucose and glycerol as carbon(More)
The full-genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger, and Aspergillus oryzae has opened possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are making available an Affymetrix GeneChip developed for transcriptome analysis of any of the three(More)
The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell(More)
Maltose utilization and regulation in aspergilli is of great importance for cellular physiology and industrial fermentation processes. In Aspergillus oryzae, maltose utilization requires a functional MAL locus, composed of three genes: MALR encoding a regulatory protein, MALT encoding maltose permease and MALS encoding maltase. Through a comparative genome(More)
Analysis of coexpressed genes in response to different perturbations at the genome-level can provide new insight into global regulatory structures. Here we performed integrated data analysis for a crossspecies comparative investigation by exploring genomes and transcriptional coexpression profiles in Aspergillus oryzae and Aspergillus niger. Based on our(More)
The gene expression and secretion of fungal lignocellulolytic enzymes are tightly controlled at the transcription level using independent mechanisms to respond to distinct inducers from plant biomass. An advanced systems-level understanding of transcriptional regulatory networks is required to rationally engineer filamentous fungi for more efficient(More)
  • 1