Margarita E. Aliaga

Learn More
The interaction between Cu(2+) ions and GSH molecules leads to the swift formation of the physiologically occurring Cu(I)-[GSH](2) complex. Recently, we reported that this complex is able to reduce molecular oxygen into superoxide in a reversible reaction. In the present study, by means of fluorescence, luminescence, EPR and NMR techniques, we investigated(More)
Mitochondrial dysfunction plays a major role in the development of oxidative stress and cytotoxicity induced by non-steroidal anti-inflammatory drugs (NSAIDs). A major objective of the present study was to investigate whether in vitro the NSAIDs, aspirin, indomethacin, diclofenac, piroxicam and ibuprofen, which feature different chemical structures, are(More)
The intracellularly-occurring Cu(I)-glutathione complex (Cu(I)-[GSH](2)) has the ability to reduce molecular oxygen into superoxide radicals (O2·-). Based on such ability, we addressed the potential of this complex to generate the redox-active Fe(2+) species, during its interaction with free Fe(3+) and with ferritin-bound iron. Results show that: (i) the(More)
The bleaching of the pyrogallol red (PGR) dye mediated by superoxide anion radicals (O(2)(-)) generated from the xanthine/xanthine oxidase system (X/XO) was studied by UV-visible spectrophotometry. The absorption band (at 540 nm) of PGR quickly decreased in the presence of X/XO, implying an efficient reaction of O(2)(-) with PGR. The process was unaffected(More)
Prompted by the recently reported capacity of the physiologically occurring Cu(I)-[glutathione](2) complex (Cu(I)-[GSH)](2)) to reduce oxygen, the effect of various GSH-binding metals (Co(2+), Cd(2+), Zn(2+), Pb(2+), Al(3+), Hg(2+) and Ni(2+)) on the superoxide-generating capacity of such complex was investigated. Amongst all tested metals, only Hg(2+) was(More)
Two new coumarin-based "turn-off" fluorescent probes, (E)-3-((3,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS1) and (E)-3-((2,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS2), were synthesized and their detection of copper(II) and iron(III) ions was studied. Results show that both compounds are highly selective for Cu²⁺ and Fe³⁺(More)
[reaction: see text] The reactions of secondary alicyclic (SA) amines and quinuclidines (QUI) with 4-nitrophenyl and 2,4-dinitrophenyl S-methyl thiocarbonates (1 and 2, respectively) and those of SA amines with 2,3,4,5,6-pentafluorophenyl S-methyl thiocarbonate (3) are subjected to a kinetic study in aqueous solution, at 25.0 degrees C, and an ionic(More)
The present study investigated the redox-consequences of the interaction between various endogenous thiols (RSH)-glutathione, cysteine, homocysteine, gamma-glutamyl-cysteine, and cysteinyl-glycine- and Cu(2+) ions, in terms of their free radical-scavenging, ascorbate-oxidizing and O2(*-)-generating properties of the resulting mixtures. Upon a brief(More)
The intracellularly-occurring Cu(I)-glutathione complex (Cu(I)-[GSH](2)) has the ability to reduce molecular oxygen into superoxide. Removal of such radicals leads to the irreversible conversion of Cu(I)-[GSH](2) into the redox-inactive Cu(II)-GSSG complex. The present study addressed the potential of reduced glutathione, ascorbate and superoxide to(More)
The physiologically occurring copper-glutathione complex, [Cu(I)-[GSH](2)], has the ability to react continually with oxygen, generating superoxide anions (O(2) (∙-)). We addressed here the effects that superoxide removal has on the redox state of Cu(I) and GSH present in such complex and assessed the formation of Cu(II)-GSSG as a final oxidation product.(More)