Learn More
The interaction between Cu(2+) ions and GSH molecules leads to the swift formation of the physiologically occurring Cu(I)-[GSH](2) complex. Recently, we reported that this complex is able to reduce molecular oxygen into superoxide in a reversible reaction. In the present study, by means of fluorescence, luminescence, EPR and NMR techniques, we investigated(More)
The bleaching of the pyrogallol red (PGR) dye mediated by superoxide anion radicals (O(2)(-)) generated from the xanthine/xanthine oxidase system (X/XO) was studied by UV-visible spectrophotometry. The absorption band (at 540 nm) of PGR quickly decreased in the presence of X/XO, implying an efficient reaction of O(2)(-) with PGR. The process was unaffected(More)
Mitochondrial dysfunction plays a major role in the development of oxidative stress and cytotoxicity induced by non-steroidal anti-inflammatory drugs (NSAIDs). A major objective of the present study was to investigate whether in vitro the NSAIDs, aspirin, indomethacin, diclofenac, piroxicam and ibuprofen, which feature different chemical structures, are(More)
Two new coumarin-based "turn-off" fluorescent probes, (E)-3-((3,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS1) and (E)-3-((2,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS2), were synthesized and their detection of copper(II) and iron(III) ions was studied. Results show that both compounds are highly selective for Cu²⁺ and Fe³⁺(More)
Prompted by the recently reported capacity of the physiologically occurring Cu(I)-[glutathione](2) complex (Cu(I)-[GSH)](2)) to reduce oxygen, the effect of various GSH-binding metals (Co(2+), Cd(2+), Zn(2+), Pb(2+), Al(3+), Hg(2+) and Ni(2+)) on the superoxide-generating capacity of such complex was investigated. Amongst all tested metals, only Hg(2+) was(More)
The intracellularly-occurring Cu(I)-glutathione complex (Cu(I)-[GSH](2)) has the ability to reduce molecular oxygen into superoxide radicals (O2·-). Based on such ability, we addressed the potential of this complex to generate the redox-active Fe(2+) species, during its interaction with free Fe(3+) and with ferritin-bound iron. Results show that: (i) the(More)
The intracellularly-occurring Cu(I)-glutathione complex (Cu(I)-[GSH](2)) has the ability to reduce molecular oxygen into superoxide. Removal of such radicals leads to the irreversible conversion of Cu(I)-[GSH](2) into the redox-inactive Cu(II)-GSSG complex. The present study addressed the potential of reduced glutathione, ascorbate and superoxide to(More)
The physiologically occurring copper-glutathione complex, [Cu(I)-[GSH](2)], has the ability to react continually with oxygen, generating superoxide anions (O(2) (∙-)). We addressed here the effects that superoxide removal has on the redox state of Cu(I) and GSH present in such complex and assessed the formation of Cu(II)-GSSG as a final oxidation product.(More)
The present study investigated the redox-consequences of the interaction between various endogenous thiols (RSH)-glutathione, cysteine, homocysteine, gamma-glutamyl-cysteine, and cysteinyl-glycine- and Cu(2+) ions, in terms of their free radical-scavenging, ascorbate-oxidizing and O2(*-)-generating properties of the resulting mixtures. Upon a brief(More)
An efficient, fast and sensitive method for the determination of Sudan I (SI) in drinks containing Sunset yellow (Sy) is developed and validated using an adsorptive stripping voltammetric procedure. Sy is currently added to a large number of foods; however during their synthesis SI may be produced. The determination is based on adsorption of Sy and SI onto(More)