Learn More
Natural selection and genetic drift are major forces responsible for temporal genetic changes in populations. Furthermore, these evolutionary forces may interact with each other. Here we study the impact of an ongoing adaptive process at the molecular genetic level by analyzing the temporal genetic changes throughout 40 generations of adaptation to a common(More)
Rye has one of the most efficient groups of genes for aluminum tolerance (Alt) among cultivated species of Triticeae. This tolerance is controlled by, at least, three independent and dominant loci (Alt1, Alt2, and Alt3) located on chromosome arms 6RS, 3RS, and 4RL, respectively. The segregation of Alt genes and several random amplified polymorphic DNA(More)
In 1966, William D. Hamilton published a landmark paper in evolutionary biology: "The Moulding of Senescence by Natural Selection." It is now apparent that this article is as important as his better-known 1964 articles on kin selection. Not only did the 1966 article explain aging, it also supplied the basic scaling forces for natural selection over the(More)
What are the genetics of phenotypes other than fitness, in outbred populations? To answer this question, the quantitative-genetic basis of divergence was characterized for outbredDrosophila melanogaster populations that had previously undergone selection to enhance characters related to fitness. Line-cross analysis using first-generation and(More)
The importance of contingency versus predictability in evolution has been a long-standing issue, particularly the interaction between genetic background, founder effects, and selection. Here we address experimentally the effects of genetic background and founder events on the repeatability of laboratory adaptation in Drosophila subobscura populations for(More)
Hybrids from crosses of different species have been reported to display decreased developmental stability when compared to their pure species, which is conventionally attributed to a breakdown of coadapted gene complexes. Drosophila subobscura and its close relative D. madeirensis were hybridized in the laboratory to test the hypothesis that genuine(More)
The impact of genetic drift in population divergence can be elucidated using replicated laboratory experiments. In the present study we used microsatellite loci to study the genetic variability and differentiation of laboratory populations of Drosophila subobscura derived from a common ancestral natural population after 49 generations in the laboratory. We(More)
Laboratory adaptation allows researchers to contrast temporal studies of experimental evolution with comparative studies. The comparative method is here taken to mean the inference of microevolutionary processes from comparisons among contemporaneous populations of diverse origins, from one or multiple species. The data contrasted here come from Drosophila(More)
Tumor progression requires the dispersion of epithelial cells from neoplastic clusters and cell invasion of adjacent stromal connective tissue. Aiming at demonstrating the precise relationships between cell dispersion and cell invasion, related respectively to expression of E-cadherin/catenin complex and matrix metalloproteinases (MMPs), we developed an(More)