Margarethus M. Paulides

Learn More
BACKGROUND AND PURPOSE In Rotterdam, patient-specific hyperthermia (HT) treatment planning (HTP) is applied for all deep head and neck (H&N) HT treatments. In this paper we introduce VEDO (the Visualisation Tool for Electromagnetic Dosimetry and Optimisation), the software tool required, and demonstrate its value for HTP-guided online complaint-adaptive(More)
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30(More)
The purpose of this work was to define all features, and show the potential, of the novel HYPERcollar applicator system for hyperthermia treatments in the head and neck region. The HYPERcollar applicator consists of (1) an antenna ring, (2) a waterbolus system and (3) a positioning system. The specific absorption rate (SAR) profile of this applicator was(More)
PURPOSE Hyperthermia treatment of head and neck tumors requires accurate treatment planning, based on 3D patient models that are derived from segmented 3D images. These segmentations are currently obtained by manual outlining of the relevant tissue regions, which is a tedious and time-consuming procedure (≈ 8 h) limiting the clinical applicability of(More)
Abstract Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44 °C, significantly enhance radiotherapy and chemotherapy effectiveness [1]. Driven by the developments in computational techniques and computing power, personalised hyperthermia treatment planning (HTP) has matured and has become a powerful tool for(More)
In this deep hyperthermia study, the robustness of SAR (specific absorption rate) patterns to patient-position variations is assessed, as well as the possibilities to correct for improper positioning and the benefits of non-standard positions. With a finite element model, the SAR distributions were predicted for ten patients at 33 positions. Position(More)
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR(wb)) and the peak 10 g spatial-averaged SAR (SAR(10g)). The objective of this(More)
To avoid potentially adverse health effects, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined reference levels for time varying magnetic fields. Restrictions on the electric fields induced in the human body are provided based on biological response data for peripheral nerve stimulation and the induction of phosphenes.(More)
To apply high-quality hyperthermia treatment to tumours at deep locations in the head and neck (H&N), we have designed and built a site-specific phased-array applicator. Earlier, we demonstrated its features in parameter studies, validated those by phantom measurements and clinically introduced the system. In this paper we will critically review our first(More)
In this paper, we describe a specifically designed patch antenna that can be used as the basis antenna element of a clinical phased-array head and neck hyperthermia applicator. Using electromagnetic simulations we optimized the dimensions of a probe-fed patch antenna design for operation at 433 MHz. By several optimization steps we could converge to a(More)