Learn More
Membrane fusion is required to establish the morphology and cellular distribution of the mitochondrial compartment. In Drosophila, mutations in the fuzzy onions (fzo) GTPase block a developmentally regulated mitochondrial fusion event during spermatogenesis. Here we report that the yeast orthologue of fuzzy onions, Fzo1p, plays a direct and conserved role(More)
The Drosophila melanogaster fuzzy onions (fzo) gene encodes the first known protein mediator of mitochondrial fusion. During Drosophila spermatogenesis, mitochondria in early postmeiotic spermatids aggregate, fuse, and elongate beside the growing flagellar axoneme. fzo mutant males are defective in this developmentally regulated mitochondrial fusion and are(More)
Although changes in mitochondrial size and arrangement accompany both cellular differentiation and human disease, the mechanisms that mediate mitochondrial fusion, fission and morphogenesis in mammalian cells are not understood. We have identified two human genes encoding potential mediators of mitochondrial fusion. The mitofusins (Mfn1 and Mfn2) are(More)
Stem cell self-renewal can be specified by local signals from the surrounding microenvironment, or niche. However, the relation between the niche and the mechanisms that ensure the correct balance between stem cell self-renewal and differentiation is poorly understood. Here, we show that dividing Drosophila male germline stem cells use intracellular(More)
Adult stem cells often divide asymmetrically to produce one self-renewed stem cell and one differentiating cell, thus maintaining both populations. The asymmetric outcome of stem cell divisions can be specified by an oriented spindle and local self-renewal signals from the stem cell niche. Here we show that developmentally programmed asymmetric behavior and(More)
Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro(More)
Stem cells generate many differentiated, short-lived cell types, such as blood, skin, and sperm, throughout adult life. Stem cells maintain a long-term capacity to divide, producing daughter cells that either self-renew or initiate differentiation. Although the surrounding microenvironment or "niche" influences stem cell fate decisions, few signals that(More)
We find that Bax, a proapoptotic member of the Bcl-2 family, translocates to discrete foci on mitochondria during the initial stages of apoptosis, which subsequently become mitochondrial scission sites. A dominant negative mutant of Drp1, Drp1K38A, inhibits apoptotic scission of mitochondria, but does not inhibit Bax translocation or coalescence into foci.(More)
We have characterized a cytoplasmic dynein motor isoform that is present in extracts of Drosophila embryos. A prominent high molecular weight (HMW) polypeptide (> 400 kDa) is enriched in microtubules prepared from nucleotide-depleted embryonic extracts. Based on its ATP-sensitive microtubule binding activity, 20 S sedimentation coefficient, sensitivity to(More)