Learn More
Infantile nephropathic cystinosis is a rare, autosomal recessive disease caused by a defect in the transport of cystine across the lysosomal membrane and characterized by early onset of renal proximal tubular dysfunction. Late-onset cystinosis, a rarer form of the disorder, is characterized by onset of symptoms between 12 and 15 years of age. We previously(More)
RATIONALE The bone morphogenetic receptor type II gene is the major genetic determinant for the inherited form of pulmonary arterial hypertension. However, deleterious mutations of this gene are not observed in the majority of subjects who develop the condition spontaneously and familial disease displays age- and sex-dependent penetrance, indicating the(More)
Nephropathic cystinosis, an autosomal recessive disorder resulting from defective lysosomal transport of cystine, is the most common inherited cause of renal Fanconi syndrome. The cystinosis gene has been mapped to chromosome 17p13. We found that the locus D17S829 was homozygously deleted in 23 out of 70 patients, and identified a novel gene, CTNS, which(More)
The human X chromosome-linked gene encoding glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) is known to be highly polymorphic from the biochemical characterization of enzyme variants. The variant A (with enzyme activity in the normal range) and the variant A- (associated with enzyme deficiency) each have a frequency of about 0.2 in several African(More)
Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) deficiency is a common genetic abnormality affecting an estimated 400 million people worldwide. Clinical and biochemical analyses have identified many variants exhibiting a range of phenotypes, which have been well characterized from the hematological point of view. However, until now, their precise(More)
Nephropathic cystinosis is an autosomal recessive disorder that is characterized by accumulation of intralysosomal cystine and is caused by a defect in the transport of cystine across the lysosomal membrane. Using a positional cloning strategy, we recently cloned the causative gene, CTNS, and identified pathogenic mutations, including deletions, that span(More)
In studying the relationship between genetic abnormalities of red blood cells and malaria endemicity in the Vanuatu archipelago in the southwestern Pacific, we have found that of 1,442 males tested, 98 (6.8%) were G6PD deficient. The prevalence of GdPD deficiency varied widely (0%-39%), both from one island to another and in different parts of the same(More)
We report the characterization at the molecular level of a mutant glucose-6-phosphate dehydrogenase (G6PD) gene in a Greek boy who presented with a chronic non-spherocytic haemolytic anaemia. In order to identify the mutation from a small amount of patient material, we adopted an approach which by-passes the need to construct a library by using the(More)
Cystinosis is an autosomal recessive disorder associated with excessive lysosomal cystine accumulation secondary to defective lysosomal cystine efflux. CTNS, the gene mutated in cystinosis, codes for the lysosomal membrane protein cystinosin. Antisera were raised in rabbits to a carboxy-terminal oligopeptide sequence from cystinosin. Antisera were screened(More)
The high prevalence of glucose 6-phosphate dehydrogenase (G6PD) deficiency in African populations is due almost entirely to the enzyme variant A-, which differs from the wild-type G6PD B by two amino acid replacements, 68 Val-->Met and 126 Asn-->Asp. The non-deficient polymorphic variant G6PD A contains only the mutation 126 Asn-->Asp. The frequencies of(More)