Margaret M. Racke

Learn More
Activation of kainate receptors causes Co2+ influx into neurons, type-2 astrocytes, and O-2A progenitor cells. Agonist-activated Co2+ uptake can be performed using cultured cells or fresh tissue slices. Based on the pattern of response to kainate, glutamate, and quisqualate, three functionally different kainate-activated ion channels (K1, K2, and K3) can be(More)
Aβ Immunotherapy is a promising therapeutic approach for Alzheimer's disease. Preclinical studies demonstrate that plaque prevention is possible; however, the more relevant therapeutic removal of existing plaque has proven elusive. Monoclonal antibodies in development target both soluble and insoluble Aβ peptide. We hypothesized that antibody specificity(More)
Passive immunization with an antibody directed against the N terminus of amyloid beta (Abeta) has recently been reported to exacerbate cerebral amyloid angiopathy (CAA)-related microhemorrhage in a transgenic animal model. Although the mechanism responsible for the deleterious interaction is unclear, a direct binding event may be required. We characterized(More)
The β-secretase enzyme, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), cleaves amyloid precursor protein (APP) in the first step in β-amyloid (Aβ) peptide production. Thus, BACE1 is a key target for candidate disease-modifying treatment of Alzheimer’s disease. In a previous exploratory Aβ biomarker study, we found that BACE1 inhibitor treatment(More)
The aim of this study was to validate new assays for measurement of amyloid-β (Aβ) peptides in cerebrospinal fluid (CSF) and plasma specimens in clinical studies of solanezumab according to current regulatory recommendations. Four assays based on the INNOTEST® β-AMYLOID(1-42) and prototype INNOTEST β-AMYLOID(1-40) kits were developed and validated. To(More)
Cholesterol homeostasis is of emerging therapeutic importance for Alzheimer's disease (AD). Agonists of liver-X-receptors (LXRs) stimulate several genes that regulate cholesterol homeostasis, and synthetic LXR agonists decrease neuropathological and cognitive phenotypes in AD mouse models. The cholesterol transporter ABCG1 is LXR-responsive and highly(More)
Activated caspase-3 is considered an important enzyme in the cell death pathway. To study the specific role of caspase-3 activation in neuronal cells, we generated a stable tetracycline-regulated SK-N-MC neuroblastoma cell line, which expressed a highly efficient self-activating chimeric caspase-3, consisting of the caspase-1 prodomain fused to the(More)
Amyloid-β 1–42 peptide (Aβ1–42) is associated with plaque formation in the brain of patients with Alzheimer’s disease (AD). Pharmacodynamic studies of AD therapeutics that lower the concentrations of Aβ1–42 in peripheral blood require highly sensitive assays for its measurement. A digital enzyme-linked immunosorbent assay (ELISA) using single molecule array(More)
Several 8-substituted 1,3-dipropylxanthines were synthesized, and their receptor binding affinities at adenosine A1 and A2 receptors were measured. When enantiomeric pairs of compounds were examined, the R enantiomers were significantly more potent than the corresponding S enantiomers. The most potent compound at the A1 receptor was(More)
  • 1