Learn More
In this paper, we report the influence that classification accuracies have in speech analysis from a clinical dataset by adding acoustic low-level descriptors (LLD) belonging to prosodic (i.e. pitch, formants, energy, jitter, shimmer) and spectral features (i.e. spectral flux, centroid, entropy and roll-off) along with their delta (¨) and delta-delta (¨-¨)(More)
We proposed a framework to detect the video contents of depressed and non-depressed subjects. First we characterized the expressed emotions in the video stream using Gabor wavelet features extracted at the facial landmarks which were detected using landmark model matching algorithm. Depressed and non-depressed class models were constructed using Gaussian(More)
The properties of acoustic speech have previously been investigated as possible cues for depression in adults. However, these studies were restricted to small populations of patients and the speech recordings were made during patients' clinical interviews or fixed-text reading sessions. Symptoms of depression often first appear during adolescence at a time(More)