Margaret H. Baron

Learn More
During gastrulation in the mouse, mesoderm is induced and patterned by secreted signaling molecules, giving rise first to primitive erythroblasts and vascular endothelial cells. We have demonstrated previously that development of these lineages requires a signal(s) secreted from the adjacent primitive endoderm. We now show that Indian hedgehog (Ihh) is a(More)
The visceral yolk sac plays a critical role in normal embryogenesis, yet little is known about the specific molecules that regulate its development. We show here that four winged-helix genes (HNF-3alpha, HNF-3beta, HNF-3gamma and HFH-4) are restricted to visceral endoderm. In the absence of HNF-3beta, visceral endoderm forms but the morphogenetic movements(More)
The pathogenesis of many congenital cardiovascular diseases involves abnormal flow within the embryonic vasculature that results either from malformations of the heart or defects in the vasculature itself. Extensive genetic and genomic analysis in mice has led to the identification of an array of mutations that result in cardiovascular defects during(More)
Due to the internal nature of mammalian development, much of the research performed is of a static nature and depends on interpolation between stages of development. This approach cannot explore the dynamic interactions that are essential for normal development. While roller culture overcomes the problem of inaccessibility of the embryo, the constant motion(More)
Hematopoietic stem cell (HSC) self-renewal and differentiation is regulated by cellular and molecular interactions with the surrounding microenvironment. During ontogeny, the aorta-gonad-mesonephros (AGM) region autonomously generates the first HSCs and serves as the first HSC-supportive microenvironment. Because the molecular identity of the AGM(More)
Cross-tolerization of T lymphocytes after apoptotic cell uptake by dendritic cells may be involved in self-tolerance maintenance. Furthermore, immunosuppressive properties are attributed to apoptotic cells. This study evaluated the consequences of apoptotic leukocyte administration in a restrictive engraftment model of murine bone marrow (BM)(More)
The anteroposterior axis of the developing embryo becomes morphologically apparent at the onset of gastrulation with the formation of the primitive streak. This structure, where the first mesodermal cells arise, marks the posterior aspect of the embryo. To examine the potential role of non-mesodermal signals in specifying posterior (hematopoietic and(More)
Primitive erythroid cells (EryP) are the earliest differentiated cell type of the mammalian embryo. They appear in the yolk sac by embryonic day 7.5, begin to enter the embryonic circulation 2 days later and continue to mature in a stepwise and synchronous fashion. Like their adult counterparts, EryP enucleate. However, EryP circulate throughout the embryo(More)
Prior to and during gastrulation, reciprocal interactions between embryonic and extraembryonic lineages are crucial for the correct patterning of the embryo. Several lines of investigation have underscored the importance of extraembryonic ectoderm and primitive endodermal in establishing the anterior-posterior axis of the embryo. Signals from these tissues(More)
The visceral endoderm (VE) is an epithelial tissue in the early postimplantation mouse embryo that encapsulates the pluripotent epiblast distally and the extraembryonic ectoderm proximally. In addition to facilitating nutrient exchange before the establishment of a circulation, the VE is critical for patterning the epiblast. Since VE is derived from the(More)