Margaret Elizabeth Ross

Learn More
Cyclo-oxygenase-2 (COX-2), a rate-limiting enzyme for prostanoid synthesis, is induced during inflammation and participates in inflammation-mediated cytotoxicity. Cerebral ischemia is followed by an inflammatory reaction that plays a role in the evolution of the tissue damage. We studied whether COX-2 is induced after cerebral ischemia and if so, whether(More)
The mammalian cerebral cortex is characterized by complex patterns of anatomical and functional areas that differ markedly between species, but the molecular basis for this functional subdivision is largely unknown. Here, we show that mutations in GPR56, which encodes an orphan G protein-coupled receptor (GPCR) with a large extracellular domain, cause a(More)
The prostanoid-synthesizing enzyme cyclooxygenase-2 (COX-2) is expressed in selected cerebral cortical neurons and is involved in synaptic signaling. We sought to determine whether COX-2 participates in the increase in cerebral blood flow produced by synaptic activity in the somatosensory cortex. In anesthetized mice, the vibrissae were stimulated(More)
Malformations of neuronal migration such as lissencephaly (agyria-pachygyria spectrum) are well-known causes of mental retardation and epilepsy that are often genetic. For example, isolated lissencephaly sequence and Miller-Dieker syndrome are caused by deletions involving a lissencephaly gene in chromosome 17p13.3, while many other malformation syndromes(More)
Classical lissencephaly (LIS) is a neuronal migration disorder resulting in brain malformation, epilepsy and mental retardation. Deletions or mutations of LIS1 on 17p13.3 and mutations in XLIS ( DCX ) on Xq22.3-q23 produce LIS. Direct DNA sequencing of LIS1 and XLIS was performed in 25 children with sporadic LIS and no deletion of LIS1 by fluorescence in(More)
Lis1 gene defects impair neuronal migration, causing the severe human brain malformation lissencephaly. Although much is known about its interactions with microtubules, microtubule-binding proteins such as CLIP-170, and with the dynein motor complex, the response of Lis1 to neuronal motility signals has not been elucidated. Lis1 deficiency is associated(More)
In contrast to cyclin D1 nulls (cD1-/-), mice without cyclin D2 (cD2-/-) lack cerebellar stellate interneurons; the reason for this is unknown. In the present study in cortex, we found a disproportionate loss of parvalbumin (PV) interneurons in cD2-/- mice. This selective reduction in PV subtypes was associated with reduced frequency of GABA-mediated(More)
Inducible nitric oxide synthase (iNOS), an enzyme that produces toxic amounts of nitric oxide, is expressed in a number of brain pathologies, including cerebral ischemia. We used mice with a null mutation of the iNOS gene to study the role of iNOS in ischemic brain damage. Focal cerebral ischemia was produced by occlusion of the middle cerebral artery(More)
It has long been recognized that the balance between cellular proliferation and cell death during embryogenesis is a key factor in formation of the CNS. The recent definition of molecular mechanisms that drive the cell-division cycle and programmed cell death provides an opportunity to investigate the molecular interactions that co-ordinate cell-cycle(More)
Detailed classification of brain malformations such as lissencephaly has led to the positional cloning of genes required for normal neuronal migration and the identification of unique molecular pathways governing brain structure. While classical magnetic resonance imaging (MRI) patterns of lissencephaly involve primarily the cerebral cortex, malformations(More)