Margaret Elizabeth Daub

Learn More
Our previous observation that host plant extracts induce production and secretion of mannitol in the tobacco pathogen Alternaria alternata suggested that, like their animal counterparts, plant pathogenic fungi might produce the reactive oxygen quencher mannitol as a means of suppressing reactive oxygen-mediated plant defenses. The concurrent discovery that(More)
Vitamin B 6 , an essential cofactor in enzymatic reactions, has only recently been linked to cellular oxidative stress. We investigated the role of this vitamin as an antioxidant in oxidative responses linked to plant defense. B 6 vitamers effectively quenched superoxide and had antioxidant activity when assayed in vitro. The de novo B 6 biosynthetic genes(More)
Plant pathogenic fungi in eight genera produce light-activated perylene-quinone toxins that are toxic to plants via the generation of activated oxygen species, particularly singlet oxygen. Studies on the cercosporin toxin produced by Cercospora species have documented an important role for this toxin in pathogenesis of host plants. Cercosporin-generated(More)
Several genera of plant pathogenic fungi produce photoactivated perylenequinone toxins involved in pathogenesis of their hosts. These toxins are photosensitizers, absorbing light energy and generating reactive oxygen species that damage the membranes of the host cells. Studies with toxin-deficient mutants and on the involvement of light in symptom(More)
The Cercospora nicotianae CRG1 gene is involved in cellular resistance to the perylenequinone toxin, cercosporin, that generates highly toxic singlet oxygen upon exposure to light. The entire open reading frame (ORF) of CRG1 was isolated and sequenced. The gene contains an ORF of 1950bp including a 65-bp intron. The predicted 650 amino acid CRG1 protein(More)
Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by(More)
Mycosphaerella fijiensis, causative agent of the black Sigatoka disease of banana, is considered the most economically damaging banana disease. Despite its importance, the genetics of pathogenicity are poorly understood. Previous studies have characterized polyketide pathways with possible roles in pathogenicity. To identify additional candidate(More)
The photoactivated toxin, cercosporin, produced by Cercospora species, plays an important role in pathogenesis of this fungus to host plants. Cercosporin has almost universal toxicity to cells due to its production of reactive oxygen species including singlet oxygen. For that reason, Cercospora species, which are highly resistant to their own toxin, are(More)
The goal of this work is to characterize membrane transporter genes in Cercospora fungi required for autoresistance to the photoactivated, active-oxygen-generating toxin cercosporin they produce for infection of host plants. Previous studies implicated a role for diverse membrane transporters in cercosporin resistance. In this study, transporters identified(More)
Cercospora coffeicola is the causal agent of brown eye spot on coffee leaves. Although the disease has significant importance, few molecular studies have been done with C. coffeicola. Here we report a protocol for isolating protoplasts as well as development of a genetic transformation system using Green Fluorescent Protein. High yields of protoplasts(More)
  • 1