Margaret E. Johnson

Learn More
Molecular force fields have been approaching a generational transition over the past several years, moving away from well-established and well-tuned, but intrinsically limited, fixed point charge models toward more intricate and expensive polarizable models that should allow more accurate description of molecular properties. The recently introduced AMOEBA(More)
The use of an effective intermolecular potential often involves a compromise between more accurate, complex functional forms and more tractable simple representations. To study this choice in detail, we systematically derive coarse-grained isotropic pair potentials that accurately reproduce the oxygen-oxygen radial distribution function of the TIP4P-Ew(More)
We define an interface-interaction network (IIN) to capture the specificity and competition between protein-protein interactions (PPI). This new type of network represents interactions between individual interfaces used in functional protein binding and thereby contains the detail necessary to describe the competition and cooperation between any pair of(More)
We present a new algorithm for simulating reaction-diffusion equations at single-particle resolution. Our algorithm is designed to be both accurate and simple to implement, and to be applicable to large and heterogeneous systems, including those arising in systems biology applications. We combine the use of the exact Green's function for a pair of reacting(More)
Here we investigate a family of isotropic waterlike glass-forming liquids, in which each thermodynamic state point corresponds to a different potential energy surface which is prescribed to reproduce the g(OO)(r;T,rho) of the reference TIP4P-Ew water model potential. Although each isotropic potential is simulated separately, together the family of isotropic(More)
The use of relative humidity control of protein crystals to overcome some of the shortcomings of soaking ligands (i.e. inhibitors, substrate analogs, weak ligands) into pre-grown apoprotein crystals has been explored. Crystals of PurE (EC, an enzyme from the purine-biosynthesis pathway of Bacillus anthracis, were used as a test case. The findings(More)
The densely connected structure of protein-protein interaction (PPI) networks reflects the functional need of proteins to cooperate in cellular processes. However, PPI networks do not adequately capture the competition in protein binding. By contrast, the interface interaction network (IIN) studied here resolves the modular character of protein-protein(More)
  • 1