Margaret A. Titus

Learn More
The eukaryotic slime mold Dictyostelium discoideum has a single conventional myosin heavy chain gene (mhcA). The elimination of the mhcA gene was achieved by homologous recombination. Two gene replacement plasmids were constructed, each carrying the G418 resistance gene as a selective marker and flanked by either 0.7 kb of 5' coding sequence and 0.9 kb of(More)
The functional relationship between three Dictyostelium myosin Is, myoA, myoB, and myoC, has been examined through the creation of double mutants. Two double mutants, myoA-/B- and myoB-/C-, exhibit similar conditional defects in fluid-phase pinocytosis. Double mutants grown in suspension culture are significantly impaired in their ability to take in(More)
The amoeboid myosin I's are required for cellular cortical functions such as pseudopod formation and macropinocytosis, as demonstrated by the finding that Dictyostelium cells overexpressing or lacking one or more of these actin-based motors are defective in these processes. Defects in these processes are concomitant with changes in the actin-filled cortex(More)
Little is known about cell-substrate adhesion and how motile and adhesive forces work together in moving cells. The ability to rapidly screen a large number of insertional mutants prompted us to perform a genetic screen in Dictyostelium to isolate adhesion-deficient mutants. The resulting substrate adhesion-deficient (sad) mutants grew in plastic dishes(More)
BACKGROUND The initial stages of phagocytosis and cell motility resemble each other. The extension of a pseudopod at the leading edge of a migratory cell and the formation of a phagocytic cup are actin dependent, and each rely on the plasma membrane adhering to a surface during dynamic extension. RESULTS A myosin VII null mutant exhibited a drastic loss(More)
We have examined the function of a member of the vasodilator-stimulated phosphoprotein family of proteins (DdVASP) in Dictyostelium. Ddvasp null cells lack filopodia, whereas targeting DdVASP to the plasma membrane with a myristoyl tag results in a significant increase in filopodia. The proline-rich domain-Ena/VASP homology 2 structure is required for both(More)
The myoA gene of Dictyostelium is a member of a gene family of unconventional myosins. The myosin Is share homologous head and basic domains, but the myoA gene product lacks the glycine-, proline-, alanine-rich and src homology 3 domains typical of several of the other myosin Is. A mutant strain of Dictyostelium lacking a functional myoA gene was produced(More)
Dictyostelium cells, devoid of conventional myosin, display a variety of motile activities, consistent with the presence of other molecular motors. The Dictyostelium genome was probed at low stringency with a gene fragment containing the conserved conventional myosin head domain sequences to identify other actin-based motors that may play a role in the(More)
Most cell types express two distinct forms of myosin I, amoeboid and short, distinguished by differences in their tail domains. Both types of myosin I have been implicated in the regulation of pseudopod formation in Dictyostelium discoideum. We examined three members of the myosin I family, one amoeboid, MyoB, and two short, MyoA and MyoB, for shared,(More)