Margaret A. Brostrom

Learn More
The role of GRP78/BiP in coordinating endoplasmic reticular (ER) protein processing with mRNA translation was examined in GH3 pituitary cells. ADP-ribosylation of GRP78 and eukaryotic initiation factor (eIF)-2alpha phosphorylation were assessed, respectively, as indices of chaperone inactivation and the inhibition of translational initiation. Inhibition of(More)
Perturbants of the endoplasmic reticulum (ER), including Ca(2+)-mobilizing agents, provoke a rapid suppression of translational initiation in conjunction with an increased phosphorylation of the alpha-subunit of eukaryotic initiation factor (eIF)-2. Depletion of ER Ca2+ stores was found to signal the activation of a specific eIF-2 alpha kinase. Analysis of(More)
HepG2 cells were employed as model system to investigate potential relationships between early protein processing and Ca2+ storage by the endoplasmic reticulum. Ca2+ was required for glycoprotein processing and export by intact cells. The processing and export of alpha 1-antitrypsin and the secretion of complement factor 3, which are glycosylated proteins,(More)
Chemicals and conditions that damage proteins, promote protein misfolding, or inhibit protein processing trigger the onset of protective homeostatic mechanisms resulting in "stress responses" in mammalian cells. Included in these responses are an acute inhibition of mRNA translation at the initiation step, a subsequent induction of various protein(More)
The endoplasmic reticulum (ER) possesses the structural and functional features expected of an organelle that supports the integration and coordination of major cellular processes. Ca(2+) sequestered within the ER sustains lumenal protein processing while providing a reservoir of the cation to support stimulus-response coupling in the cytosol. Release of ER(More)
Agents, such as EGTA, thapsigargin, and ionophore A23187, that mobilize sequestered Ca2+ from the endoplasmic reticulum (ER) or dithiothreitol (DTT) that compromises the oxidizing environment of the organelle, disrupt early protein processing and inhibit translational initiation. Increased phosphorylation of eIF-2α (5-fold) and inhibition of eIF-2B activity(More)
Mobilization of Ca2+ from the endoplasmic reticulum (ER) suppresses translational initiation and inhibits post-translational processing and secretion of glycoproteins. This study explores the mechanism whereby ionomycin, a Ca2+ ionophore, and thapsigargin, an ER Ca(2+)-ATPase inhibitor, promote retention of alpha 1-antitrypsin (alpha 1-AT) bearing high(More)
The Ca2+ content of glial tumor (C6) cells was reduced approximately 5-fold by repeated treatment with media containing ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA) without loss of cellular viability. The ability of the cells to accumulate cAMP in response to beta-adrenergic agonists was reduced 60 to 70% following Ca2+ depletion.(More)