Learn More
Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the(More)
In eukaryotes, the number and rough organization of chromosomes is well preserved within isolates of the same species. Novel chromosomes and loss of chromosomes are infrequent and usually associated with pathological events. Here, we analyzed 40 pathogenic isolates of a haploid and asexual yeast, Candida glabrata, for their genome structure and stability.(More)
The parabasalian flagellate Trichomonas vaginalis harbors mitochondrion-related and H(2)-producing organelles of anaerobic ATP synthesis, called hydrogenosomes, which harbor oxygen-sensitive enzymes essential to its pyruvate metabolism. In the human urogenital tract, however, T. vaginalis is regularly exposed to low oxygen concentrations and therefore must(More)
The origin and early evolution of animals marks an important event in life's history. This event is historically associated with an important variable in Earth history - oxygen. One view has it that an increase in oceanic oxygen levels at the end of the Neoproterozoic Era (roughly 600 million years ago) allowed animals to become large and leave fossils. How(More)
Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about(More)
Permeabilization of the outer mitochondrial membrane that leads to the release of cytochrome c and several other apoptogenic proteins from mitochondria into cytosol represents a commitment point of apoptotic pathway in mammalian cells. This crucial event is governed by proteins of the Bcl-2 family. Molecular mechanisms, by which Bcl-2 family proteins(More)
Proteins of the Bcl-2 family regulate programmed cell death in mammals by promoting the release of cytochrome c from mitochondria in response to various proapoptotic stimuli. The mechanism by which BH3-only members of the family activate multidomain proapoptotic proteins Bax and Bak to form a pore in mitochondrial membranes remains under dispute. We report(More)
BH3-only proteins of the Bcl-2 family regulate programmed cell death in mammals through activation of multidomain proapoptotic proteins Bax and Bak in response to various proapoptotic stimuli by mechanism that remains under dispute. Here, we report that the cell death-promoting activity of BH3-only proteins Bik, Bmf, Noxa, and tBid can only be reconstituted(More)
Many pathogenic yeast species are asexual and therefore not involved in intra- or interspecies mating. However, high-frequency transfer of plasmid DNA was observed when pathogenic and food-borne yeasts were grown together. This property could play a crucial role in the spread of virulence and drug resistance factors among yeasts.
Yarrowia lipolytica is a strictly aerobic fungus, which differs from the extensively studied model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe with respect to its physiology, genetics and dimorphic growth habit. We isolated and sequenced cDNA and genomic clones (YlAAC1) from Y. lipolytica that encode a mitochondrial ADP/ATP carrier. The(More)