Marek Cieślak

Learn More
Extracellular nucleotides and adenosine play important roles in inflammation. These signaling molecules interact with the cell-surface-located P2 and P1 receptors, respectively, that are widely distributed in the central nervous system and generally exert opposite effects on immune responses. Indeed, extracellular ATP, ADP, UTP, and UDP serve as alarmins or(More)
Latest results on the action of adenosine A(2A) receptor antagonists indicate their potential therapeutic usefulness in the treatment of Parkinson's disease. Basal ganglia possess high levels of adenosine A(2A) receptors, mainly on the external surfaces of neurons located at the indirect tracts between the striatum, globus pallidus, and substantia nigra.(More)
Several relations between cytokines and pathogenesis of diabetes are reviewed. In type 1 and type 2 diabetes an increased synthesis is observed and as well as the release of pro-inflammatory cytokines, which cause the damage of pancreatic islet cells and, in type 2 diabetes, the development of the insulin resistance. That process results in the disturbed(More)
It is widely accepted that purinergic signaling is involved in the regulation of functions of all known tissues and organs. Extracellular purines activate two classes of receptors, P1-adenosine receptors and P2-nucleotide receptors, in a concentration-dependent manner. Ecto-enzymes metabolizing nucleotides outside the cell are involved in the termination of(More)
Etiopathogenesis of migraine involves different structures of the central nervous system: the trigeminal nerve with nuclei located in the brain stem, vascular system, and the cerebral cortex as well as diverse mechanisms and pathological processes. The multidirectional action of purines in different cell types (blood vessels, neurons, and satellite glial(More)
Adenine nucleotides and adenosine are signaling molecules that activate purinergic receptors P1 and P2. Activation of A1 adenosine receptors has an anticonvulsant action, whereas activation of A2A receptors might initiate seizures. Therefore, a significant limitation to the use of A1 receptor agonists as drugs in the CNS might be their peripheral side(More)
Ecto-purines and ecto-pyrimidines are present in the extracellular space of the central nervous system (CNS). Together with P1 and P2 receptors and nucleotides metabolizing ecto-enzymes, they make signaling system involved in neurotransmission, the modulation of sensory signals, including pain stimuli conduction, and the induction of apoptosis and necrosis(More)
Pro-inflammatory cytokines participate in the induction of ischemic stroke. So far, their participation in the cerebral ischemia was proven for the tumor necrosis factor TNF-α, interleukin-1 (IL-1), and interleukin-6 (IL-6). The release of the pro-inflammatory cytokines into the extracellular space causes the enlargement of the brain damage region, and(More)
Nucleotides released from activated and/or injured cells activate P2 receptors. Extracellular nucleotides serve as danger signals or damage-associated molecular patterns (DAMPs) that trigger various immune responses. Indeed, P2 receptors are highly expressed in the astrocytes, microglia and other immune cells such as T and B lymphocytes that migrate to the(More)
Anchoring of spinal cord at S2 level is described in a female patient aged 46, associated with bilateral equinovarus deformity and spina bifida in lumbar segment. The onset of the disease was sudden due to prolapse of intervertebral disc at L2-L3 and L3-L4 levels followed by bilateral flaccid-spastic paraparesis. In view of congenital spinal deformity(More)
  • 1