Marcus Stephenson-Jones

Learn More
BACKGROUND Although the basal ganglia are thought to play a key role in action selection in mammals, it is unknown whether this mammalian circuitry is present in lower vertebrates as a conserved selection mechanism. We aim here, using lamprey, to elucidate the basal ganglia circuitry in the phylogenetically oldest group of vertebrates (cyclostomes) and(More)
The medial (MHb) and lateral (LHb) habenulae are a small group of nuclei that regulate the activity of monoaminergic neurons. Disruptions to these nuclei lead to deficits in a range of cognitive and motor functions from sleep to decision making. Interestingly, the habenular nuclei are present in all vertebrates, suggesting that they provide a common neural(More)
The basal ganglia are critical for selecting actions and evaluating their outcome. Although the circuitry for selection is well understood, how these nuclei evaluate the outcome of actions is unknown. Here, we show in lamprey that a separate evaluation circuit, which regulates the habenula-projecting globus pallidus (GPh) neurons, exists within the basal(More)
The basic features of the vertebrate nervous system are conserved throughout vertebrate phylogeny to a much higher degree than previously thought. In this mini-review, we show that not only the organization of the different motor programs underlying eye, orienting, locomotor, and respiratory movements are similarly organized, but also that the basic(More)
All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the(More)
The dopaminergic system influences motor behavior, signals reward and novelty, and is an essential component of the basal ganglia in all vertebrates including the lamprey, one of the phylogenetically oldest vertebrates. The intrinsic organization and function of the lamprey basal ganglia is highly conserved. For instance, the direct and indirect pathways(More)
The basal ganglia, including the striatum, globus pallidus interna and externa (GPe), subthalamic nucleus (STN), and substantia nigra pars compacta, are conserved throughout vertebrate phylogeny and have been suggested to form a common vertebrate mechanism for action selection. In mammals, this circuitry is further elaborated by the presence of a(More)
The group of nuclei within the basal ganglia of the forebrain is central to the control of movement. We present data showing that the structure and function of the basal ganglia have been conserved throughout vertebrate evolution over some 560 million years. The interaction between the different nuclei within the basal ganglia is conserved as well as the(More)
The striatum of the basal ganglia is conserved throughout the vertebrate phylum. Tracing studies in lamprey have shown that its afferent inputs are organized in a manner similar to that of mammals. The main inputs arise from the thalamus (Th) and lateral pallium (LPal; the homologue of cortex) that represents the two principal excitatory glutamatergic(More)
The functions of the basal ganglia are critically dependent on dopamine. In mammals, dopamine differentially modulates the excitability of the direct and indirect striatal projection neurons, and these populations selectively express dopamine D1 and D2 receptors, respectively. Although the detailed organization of the basal ganglia is conserved throughout(More)
  • 1