Learn More
The effect of a 20 s sustained inflation (SI) and positive end-expiratory pressure (PEEP) on functional residual capacity (FRC) formation at birth were investigated. Preterm rabbit pups (28 d) were randomized at birth into four groups (n = 6 for each): 1) SI, PEEP 5 cm H2O, 2) no SI, PEEP 5 cm H2O, 3) no SI + no PEEP, 4) SI + no PEEP. FRC and tidal volume(More)
As neonatal resuscitation critically depends upon lung aeration at birth, knowledge of the progression of this process is required to guide ongoing care. We investigated whether expired CO2 (ECO2) levels indicate the degree of lung aeration immediately after birth in two animal models and in preterm infants. Lambs were delivered by caesarean section and(More)
At birth, the initiation of pulmonary gas exchange is dependent on air entry into the lungs, and recent evidence indicates that pressures generated by inspiration may be involved. We have used simultaneous plethysmography and phase-contrast X-ray imaging to investigate the contribution of inspiration and expiratory braking maneuvers (EBMs) to lung aeration(More)
We propose that the respiratory transition at birth passes through three distinct, but overlapping phases, which reflect different physiological states of the lung. Accordingly, respiratory support given to infants should be optimised to suit the underlying physiological state of the lung as it passes through each phase. During the first phase, the airways(More)
The factors regulating lung aeration and the initiation of pulmonary gas exchange at birth are largely unknown, particularly in infants born very preterm. As hydrostatic pressure gradients may play a role, we have examined the effect of a positive end-expiratory pressure (PEEP) on the spatial and temporal pattern of lung aeration in preterm rabbit pups(More)
High quality real-time imaging of lungs in vivo presents considerable challenges. We demonstrate here that phase contrast x-ray imaging is capable of dynamically imaging the lungs. It retains many of the advantages of simple x-ray imaging, whilst also being able to map weakly absorbing soft tissues based on refractive index differences. Preliminary results(More)
Aeration of the lung and the transition to air-breathing at birth is fundamental to mammalian life and initiates major changes in cardiopulmonary physiology. However, the dynamics of this process and the factors involved are largely unknown, because it has not been possible to observe or measure lung aeration on a breath-by-breath basis. We have used the(More)
The significant degree of X-ray phase contrast created by air-tissue interfaces, coupled with the poor radiographic contrast of conventional chest radiographs, makes the inflated lung an ideal candidate for investigating the potential diagnostic improvement afforded by phase contrast X-ray imaging. In small animals these methods highlight the lung airways(More)
Phase contrast x-ray imaging can provide detailed images of lung morphology with sufficient spatial resolution to observe the terminal airways (alveoli). We demonstrate that quantitative functional and anatomical imaging of lung ventilation can be achieved in vivo using two-dimensional phase contrast x-ray images with high contrast and spatial resolution(More)
The effect of inflation length on lung aeration pattern, tidal volumes, and functional residual capacity (FRC) immediately after birth was investigated. Preterm rabbits (28 d), randomized into four groups, received a 1-, 5-, 10-, or 20-s inflation (SI) followed by ventilation with 5 cm H2O end-expiratory pressure. Gas volumes were measured by(More)