Marcus Deschauer

Learn More
Intracellular accumulations of mutant, misfolded proteins are major pathological hallmarks of amyotrophic lateral sclerosis (ALS) and related disorders. Recently, mutations in Sigma receptor 1 (SigR1) have been found to cause a form of ALS and frontotemporal lobar degeneration (FTLD). Our goal was to pinpoint alterations and modifications of SigR1 in ALS(More)
The authors investigated 32 patients with the muscle form of CPT II deficiency. Total carnitine palmitoyltransferase enzyme system (CPT) activity was normal but abnormally inhibited by malonyl-CoA, palmitoyl-CoA, and the detergents Triton X and Tween 20. Mutation analysis identified three described mutations (S113L, P50H, and F448L) and two novel mutations(More)
Previous findings suggested specific mitochondrial dysfunction in skeletal muscle of patients with amyotrophic lateral sclerosis (ALS). To answer the question of whether the dysfunction is specific, we investigated the histochemical distribution of mitochondrial marker activities, the ratio of mitochondrial (mt) versus nuclear (n) DNA, and the activities of(More)
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscular disorder with a wide clinical variability. Contractions of the D4Z4 macrosatellite repeat on chromosome 4q35 are the molecular basis of the pathophysiology. Recently, in a subset of patients without D4Z4 repeat contractions, variants in the SMCHD1 gene have been identified that(More)
Dok ('downstream-of-kinase') family of cytoplasmic proteins play a role in signalling downstream of receptor and non-receptor phosphotyrosine kinases. Recently, a skeletal muscle receptor tyrosine kinase (MuSK)-interacting cytoplasmic protein termed Dok-7 has been identified. Subsequently, we and others identified mutations in DOK7 as a cause of congenital(More)
Glycogen storage disease type 2(GSD2)/Pompe disease is characterized by respiratory and skeletal muscle weakness and atrophy, resulting in functional disability and reduced life span. We present an open-label, investigator-initiated observational study of alglucosidase alfa enzyme replacement therapy (ERT) in 38 adult-onset GSD2 patients (20 female, 18(More)
BACKGROUND Pathogenic mitochondrial DNA (mtDNA) mutations are found in at least one in 8000 individuals. No effective treatment for mtDNA disorders is available, making disease prevention important. Many patients with mtDNA disease harbour a single pathogenic mtDNA deletion, but the risk factors for new cases and disease recurrence are not known. METHODS(More)
The authors describe siblings with progressive external ophthalmoplegia (PEO) due to a novel heterozygous A to G transition at nucleotide 955 of C10Orf2 (Twinkle). The mutation was not identified in parents' blood, hair follicles, buccal mucosa, or urinary epithelium, indicating germ line mosaicism. One sibling presented with sensory ataxic neuropathy,(More)
BACKGROUND Pompe disease is a rare hereditary metabolic myopathy caused by a deficiency of acid-α-glucosidase. We investigated the presence and severity of pain and its interference with daily activities in a large group of adults with Pompe disease, who we compared with an age-matched control group. METHODS Data were collected in a cross-sectional survey(More)
Only four different mutations in the adenine nucleotide translocator 1 (ANT1) gene have been found in families with progressive external ophthalmoplegia (PEO). We report a novel heterozygous C to A transversion at nucleotide 269 in the ANT1 gene in a German family with PEO, predicted to convert a highly conserved alanine at codon 90 to aspartic acid. The(More)