Marcus Aldén

Learn More
A novel technique for measuring droplet temperatures has been demonstrated. Laser-induced phosphorescence from thermographic phosphors, seeded to distilled water and iso-octane, was used to measure temperatures of single falling droplets. The phosphors were excited by the fourth and third harmonics of a Nd:YAG laser. The subsequent emission was evaluated by(More)
Laser techniques were applied to an acoustically levitated droplet for remote investigation of the diameter, species concentration and temperature of the suspended droplet. To this end, the third and the fourth harmonic of a Nd:YAG laser were used for investigation of elastic, fluorescence and phosphorescence signals from the droplet. The droplet was seeded(More)
General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from(More)
Formaldehyde (CH2O) is an important intermediate species in combustion processes and it can through laser-induced fluorescence measurements be used for instantaneous flame front detection. The present study has focussed on the use of the third harmonic of a Nd:YAG laser at 355 nm as excitation wavelength for formaldehyde, and different dimethyl ether(More)
A detailed experimental investigation has been made of the pyrolysis--the first step in biomass combustion--of single birchwood particles. In addition to mass spectrometric and gravimetric analysis, the pyrolysis volatiles were characterized by different optical techniques. Absorption measurements showed a nearly featureless absorption in the ultraviolet(More)
A simple model is presented as an aid in understanding, first, the relative noise performance and, second, the noise reduction achievable by referencing, in different experimental approaches to single shot broadband coherent anti-Stokes Raman scattering (CARS). Qualitative agreement is obtained with previous experimental investigations of CARS noise. The(More)
We demonstrate how spatially resolved distributions of NO and NO(2) can be simultaneously detected by using a single laser pulse at 452 nm. The laser-induced fluorescence from NO was achieved by a two-photon transition in the gamma band at 226 nm followed by UV detection, whereas NO(2) was detected by a one-photon transition followed by Stokes fluorescence.
Different rotational CARS techniques have been evaluated in terms of single-shot temperature accuracy and signal intensity in room temperature nitrogen and in flames. The different techniques include both dual broadband techniques, using one or two broadband dye lasers, and conventional rotational CARS with different dye lasers. These techniques are also(More)