Marcos Marcelino

Learn More
Aeration phase length control and step-feed of wastewater are used to achieve nitrogen removal from wastewater via nitrite in sequencing batch reactors (SBR). Aeration is switched off as soon as ammonia oxidation is completed, which is followed by the addition of a fraction of the wastewater that the SBR receives over a cycle to facilitate denitrification.(More)
The modelling of the enhanced biological phosphorus removal (EBPR) process is a recent focus of interest. The pH profile is a promising output variable for EBPR modelling as it is very sensitive to the consumption or production of acid and base species (e.g. phosphate or VFA). pH-based EBPR modelling is based on the assumption that phosphorus is released(More)
Nitrogen removal via the nitrite pathway results in significant savings in both aeration costs and COD requirements for denitrification when compared to the conventional biological nitrogen removal process. Implementation of the nitrite pathway for simultaneous C/N/P removal in a single sludge system has a major drawback: the aeration phase disfavours(More)
Nitrogen removal via nitrite has recently gained a lot of interest because it results in significant savings in both aeration costs and COD (chemical oxygen demand) requirements for denitrification, when compared to the conventional biological nitrogen removal via nitrate. The effectiveness of two different control strategies to achieve the nitrite pathway(More)
The psyllid Triozoida limbata (Enderlein) (Hemiptera: Triozidae) is a major pest in guava, feeding primarily on new shoots. Despite its importance, there are no studies on the spatial distribution of T. limbata on guava. Such studies are needed to establish sequential sampling plans for decision making in pest control. Thus, an experiment was carried out in(More)
  • 1