Marcos Dias Pereira

Learn More
BACKGROUND Quinones are compounds extensively used in studies of oxidative stress due to their role in plants as chemicals for defense. These compounds are of great interest for pharmacologists and scientists, in general, because several cancer chemotherapeutic agents contain the quinone nucleus. However, due to differences in structures and diverse(More)
Eukaryotic cells have developed mechanisms to rapidly respond towards the environment by changing the expression of a series of genes. There is increasing evidence that reactive oxygen species (ROS), besides causing damage, may also fulfill an important role as second messengers involved in signal transduction. Recently, we have demonstrated that deletion(More)
Aiming to clarify the mechanisms by which eukaryotes acquire tolerance to oxidative stress, adaptive and cross-protection responses to oxidants were investigated in Saccharomyces cerevisiae. Cells treated with sub-lethal concentrations of menadione (a source of superoxide anions) exhibited cross-protection against lethal doses of peroxide; however, cells(More)
Living cells constantly sense and adapt to redox shifts by the induction of genes whose products act to maintain the cellular redox environment. In the eukaryote Saccharomyces cerevisiae, while stationary cells possess a degree of constitutive resistance towards oxidants, treatment of exponential phase cultures with sub-lethal stresses can lead to the(More)
Aiming to focus the protective role of the sugar trehalose under oxidative conditions, two sets of Saccharomyces cerevisiae strains, having different profiles of trehalose synthesis, were used. Cells were treated either with a 10% trehalose solution or with a heat treatment (which leads to trehalose accumulation) and then exposed either to menadione (a(More)
Calorie restriction increases longevity of mammals and yeasts but this mechanism remains unclear. In this study, the role of glutathione on lifespan extension induced by calorie restriction was investigated by using a Saccharomyces cerevisiae strain deficient in glutathione synthesis (gsh1). We observed an increase in chronological lifespan of(More)
In Saccharomyces cerevisiae, accumulation of cadmium-glutathione complex in cytoplasm inhibits cadmium absorption, glutathione transferase 2 is required for the formation of the complex and the vacuolar gamma-glutamyl transferase participates of the first step of glutathione degradation. Here, we proposed that Lap4, a vacuolar amino peptidase, is involved(More)
Reactive oxygen species (ROS) are thought to underline the process of ageing and the pathogenicity of various diseases, such as neurodegenerative disorders and cancer. The use of traditional medicine is widespread and plants still present a large source of natural antioxidants that might serve as leads for the development of novel drugs. In this paper, the(More)
Cadmium is a strong mutagen that acts by inhibiting DNA mismatch repair, while its toxic effect seems to be related to an indirect oxidative stress that involves glutathione (GSH) mobilization. Among the roles of GSH is the protection of proteins against oxidative damage, by forming reversible mixed disulfides with cysteine residues, a process known as(More)
Mutations in Cu, Zn-superoxide dismutase (Sod1) have been associated with familial amyotrophic lateral sclerosis, an age-related disease. Because several studies suggest that oxidative stress plays a central role in neurodegeneration, we aimed to investigate the role of the antioxidant glutathione (GSH) in the activation of human A4V Sod1 during(More)