Marcos André Gonçalves

Learn More
Predicting Web content popularity is an important task for supporting the design and evaluation of a wide range of systems, from targeted advertising to effective search and recommendation services. We here present two simple models for predicting the future popularity of Web content based on historical information given by early popularity measures. Our(More)
A number of online video social networks, out of which YouTube is the most popular, provides features that allow users to post a video as a response to a discussion topic. These features open opportunities for users to introduce polluted content, or simply pollution, into the system. For instance, <i>spammers</i> may post an unrelated video as response to a(More)
Name ambiguity in the context of bibliographic citation records is a hard problem that affects the quality of services and content in digital libraries and similar systems. The challenges of dealing with author name ambiguity have led to a myriad of disambiguation methods. Generally speaking, the proposed methods usually attempt to group citation records of(More)
Digital libraries (DLs) are complex information systems and therefore demand formal foundations lest development efforts diverge and interoperability suffers. In this article, we propose the fundamental abstractions of Streams, Structures, Spaces, Scenarios, and Societies (5S), which allow us to define digital libraries rigorously and usefully. Streams are(More)
As the number of research papers available on the Web has increased enormously over the years, paper recommender systems have been proposed to help researchers on automatically finding works of interest. The main problem with the current approaches is that they assume that recommending algorithms are provided with a rich set of evidence (e.g., document(More)
Content-targeted advertising, the task of automatically associating ads to a Web page, constitutes a key Web monetization strategy nowadays. Further, it introduces new challenging technical problems and raises interesting questions. For instance, how to design ranking functions able to satisfy conflicting goals such as selecting advertisements (ads) that(More)
Recommender systems attempt to reduce information overload and retain customers by selecting a subset of items from a universal set based on user preferences. While research in recommender systems grew out of information retrieval and filtering, the topic has steadily advanced into a legitimate and challenging research area of its own. Recommender systems(More)
The old dream of a universal repository containing all the human knowledge and culture is becoming possible through the Internet and the Web. Moreover, this is happening with the direct collaborative, participation of people. Wikipedia is a great example. It is an enormous repository of information with free access and edition, created by the community in a(More)
Due to the increasing amount of information present on the Web, Automatic Document Classification (ADC) has become an important research topic. ADC usually follows a standard supervised learning strategy, where we first build a model using preclassified documents and then use it to classify new unseen documents. One major challenge for ADC in many scenarios(More)