Learn More
Animating natural human motion in dynamic environments is difficult because of complex geometric and physical interactions. Simulation provides an automatic solution to parts of this problem, but it needs control systems to produce lifelike motions. This paper describes the systematic computation of controllers that can reproduce a range of locomotion(More)
Standing is a fundamental skill mastered by humans and animals alike. Although easy for adults, it requires careful and deliberate manipulation of contact forces. The variation in contact configuration (e.g., standing on one foot, on uneven ground, or while holding on for support) presents a difficult challenge for interactive simulation of humans and(More)
We present results from a user study that compared six visualization methods for two-dimensional vector data. Users performed three simple but representative tasks using visualizations from each method: 1) locating all critical points in an image, 2) identifying critical point types, and 3) advecting a particle. Visualization methods included two that used(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract Many data-driven animation techniques are capable of producing high(More)
Keyframe animation is a common technique to generate animations of deformable characters and other soft bodies. With spline interpolation, however, it can be difficult to achieve secondary motion effects such as plausible dynamics when there are thousands of degrees of freedom to animate. Physical methods can provide more realism with less user effort, but(More)
We present results from a user study that compared six visualization methods for 2D vector data. Two methods used different distributions of short arrows, two used different distributions of integral curves, one used wedges located to suggest flow lines, and the final was line-integral convolution (LIC). We defined three simple but representative tasks for(More)
Controllers are necessary for physically-based synthesis of character animation. However, creating controllers requires either manual tuning or expensive computer optimization. We introduce linear Bellman combination as a method for reusing existing controllers. Given a set of controllers for related tasks, this combination creates a controller that(More)
Time warping allows users to modify timing without affecting poses. It has many applications in animation systems for motion editing, such as refining motions to meet new timing constraints or modifying the acting of animated characters. However, time warping typically requires many manual adjustments to achieve the desired results. We present a technique(More)
We routinely generate reaching arm movements to function independently. For paralyzed users of upper extremity neural prosthetic devices, flexible, high-performance reaching algorithms will be critical to restoring quality-of-life. Previously, algorithms called real-time reach state equations (RSE) were developed to integrate the user's plan and(More)
  • 1