Learn More
Hydroquinone 1,2-dioxygenase (HQDO), an enzyme involved in the catabolism of 4-hydroxyacetophenone in Pseudomonas fluorescens ACB, was purified to apparent homogeneity. Ligandation with 4-hydroxybenzoate prevented the enzyme from irreversible inactivation. HQDO was activated by iron(II) ions and catalyzed the ring fission of a wide range of hydroquinones to(More)
To expand the available set of Baeyer–Villiger monooxygenases (BVMOs), we have created expression constructs for producing 22 Type I BVMOs that are present in the genome of Rhodococcus jostii RHA1. Each BVMO has been probed with a large panel of potential substrates. Except for testing their substrate acceptance, also the enantioselectivity of some selected(More)
Phenylacetone monooxygenase (PAMO) from Thermobifida fusca is a FAD-containing Baeyer-Villiger monooxygenase (BVMO). To elucidate the mechanism of conversion of phenylacetone by PAMO, we have performed a detailed steady-state and pre-steady-state kinetic analysis. In the catalytic cycle ( k cat = 3.1 s (-1)), rapid binding of NADPH ( K d = 0.7 microM) is(More)
During the last decades a large number of flavin-dependent monooxygenases have been isolated and studied. This has revealed that flavoprotein monooxygenases are able to catalyze a remarkable wide variety of oxidative reactions such as regioselective hydroxylations and enantioselective sulfoxidations. These oxidation reactions are often difficult, if not(More)
Baeyer±Villiger monooxygenases (BVMOs) are flavoenzymes that catalyze a remarkably wide variety of oxidative reactions such as regio-and enantioselective Baeyer±Villiger oxidations and sulfoxidations. Several of these conversions are difficult to achieve using chemical approaches. Due to their selectivity and catalytic efficiency, BVMOs are highly valuable(More)
The Baeyer-Villiger monooxygenase (BVMO), 4-hydroxyacetophenone monooxygenase (HAPMO), uses NADPH and O(2) to oxidize a variety of aromatic ketones and sulfides. The FAD-containing enzyme has a 700-fold preference for NADPH over NADH. Sequence alignment with other BVMOs, which are all known to be selective for NADPH, revealed three conserved basic residues,(More)
DyP peroxidases comprise a novel superfamily of heme-containing peroxidases, which is unrelated to the superfamilies of plant and animal peroxidases. These enzymes have so far been identified in the genomes of fungi, bacteria, as well as archaea, although their physiological function is still unclear. DyPs are bifunctional enzymes displaying not only(More)
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the reversible intramolecular nucleophilic displacement of a halogen by a hydroxyl group in vicinal haloalcohols, producing the corresponding epoxides. The enzyme displays high enantioselectivity toward some aromatic halohydrins. To understand the kinetic mechanism and(More)
Baeyer–Villiger monooxygenase-catalysed reactions are attractive for industrial processes. Here we report on expanding the substrate scope of phenylacetone monooxygenase (PAMO). In order to introduce activity on alicyclic ketones in PAMO, we generated and screened a library of 1,500 mutants. Based on recently published structures of PAMO and its mutants, we(More)