Marco Vanoni

Learn More
This work describes the in vitro interaction between a lupin seed protein, namely, conglutin gamma, and insulin. The binding to an insulin-immobilized matrix occurs in the pH range from 7.5 to 4.2 and is strongly affected by ionic strength, suggesting that it is driven primarily by electrostatic interactions. The quantitative parameters of the binding were(More)
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the(More)
The rapamycin-sensitive (TOR) signalling pathway in Saccharomyces cerevisiae controls growth and cell proliferation in response to nutrient availability. Rapamycin treatment causes cells to arrest growth in G1 phase. The mechanism by which the inhibition of the TOR pathway regulates cell cycle progression is not completely understood. Here we show that(More)
Saccharomyces cerevisiae must reach a carbon source-modulated critical cell size, protein content per cell at the onset of DNA replication (Ps), in order to enter S phase. Cells grown in glucose are larger than cells grown in ethanol. Here, we show that an increased level of the cyclin-dependent inhibitor Far1 increases cell size, whereas far1 Delta cells(More)
Both the MAL1 and MAL6 loci in Saccharomyces strains have been shown by functional and structural studies to comprise a cluster of at least three genes necessary for maltose utilization. They include regulatory, maltose transport and maltase genes designated MALR, MALT and MALS, respectively. Subclones of each gene derived from the MAL6 locus were inserted(More)
BACKGROUND Oncogene activation plays a role in metabolic reprogramming of cancer cells. We have previously shown that K-ras transformed fibroblasts have a stronger dependence on glycolysis and a reduced oxidative phosphorylation ability as compared to their normal counterparts. Another metabolic adaptation of cancer cells, that has long been established, is(More)
CK2 is a highly conserved protein kinase controlling different cellular processes. It shows a higher activity in proliferating mammalian cells, in various types of cancer cell lines and tumors. The findings presented herein provide the first evidence of an in vivo modulation of CK2 activity, dependent on growth rate, in Saccharomyces cerevisiae. In fact,(More)
The insulin-like growth factor receptor I (IGF-IR) plays an essential role in transformation by promoting cell growth and protecting cancer cells from apoptosis. Aberrant IGF-IR signaling is implicated in several types of tumors, including carcinomas of the lung, breast, prostate, pancreas, liver, and colon. However, the contribution of the IGF-IR to the(More)
By sequence analysis we found an amino acid stretch centred on Serine201 matching a stringent CK2 consensus site within the C-terminal, inhibitory domain of Sic1. Here we show by direct mass spectrometry analysis that Sic1, but not a mutant protein whose CK2 phospho-acceptor site has been mutated to alanine, Sic1S201A, is actually phosphorylated in vitro by(More)
The cyclin dependent kinase inhibitor Sic1 and the cyclin Clb5 are essential regulators of the cyclin dependent kinase Cdc28 during the G1 to S transition in budding yeast. Yeast enters S phase after ubiquitin-mediated degradation of Sic1, an event triggered by Cln1, 2-Cdc28 mediated phosphorylation. We recently showed that Sic1 is involved in carbon source(More)