Marco Siderius

Learn More
The HOG/p38 MAP kinase route is an important stress-activated signal transduction pathway that is well conserved among eukaryotes. Here, we describe a novel mechanism of activation of the HOG pathway in budding yeast. This mechanism operates upon severe osmostress conditions (1.4 M NaCl) and is independent of the Sln1p and Sho1p osmosensors. The alternative(More)
US28 is a viral G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor encoded by the human cytomegalovirus (HCMV). In addition to binding and internalizing chemokines, US28 constitutively activates signaling pathways linked to cell proliferation. Here, we show increased concentrations of vascular endothelial growth factor and(More)
Response to hyperosmolarity in the baker's yeast Saccharomyces cerevisiae has attracted a great deal of attention of molecular and cellular biologists in recent years, from both the fundamental scientific and applied viewpoint. Indeed the underlying molecular mechanisms form a clear demonstration of the intricate interplay of (environmental) signalling(More)
BACKGROUND AND PURPOSE The C-X-C chemokine receptors 3 (CXCR3) and C-X-C chemokine receptors 4 (CXCR4) are involved in various autoimmune diseases and cancers. Small antagonists have previously been shown to cross-inhibit chemokine binding to CXCR4, CC chemokine receptors 2 (CCR2) and 5 (CCR5) heteromers. We investigated whether CXCR3 and CXCR4 can form(More)
The yeast Saccharomyces cerevisiae utilizes rapidly responding mitogen-activated protein kinase (MAPK) signaling cascades to adapt efficiently to a changing environment. Here we report that phosphorylation of Cdc37p, an Hsp90 cochaperone, by casein kinase 2 controls the functionality of two MAPK cascades in yeast. These pathways, the high-osmolarity(More)
The recruitment of leukocytes to infectious foci depends strongly on the local release of chemoattractant mediators. The human CXC chemokine receptor 3 (CXCR3) is an important node in the chemokine signaling network and is expressed by multiple leukocyte lineages, including T cells and macrophages. The ligands of this receptor originate from an ancestral(More)
The osmosensitive phenotype of the hog1 strain is suppressed at elevated temperature. Here, we show that the same holds true for the other commonly used HOG pathway mutant strains pbs2 and sho1ssk2ssk22, but not for ste11ssk2ssk22. Instead, the ste11ssk2ssk2 strain displayed a hyperosmosensitive phenotype at 37 degrees C. This phenotype is suppressed by(More)
Many critical protein kinases rely on the Hsp90 chaperone machinery for stability and function. After initially forming a ternary complex with kinase client and the cochaperone p50(Cdc37), Hsp90 proceeds through a cycle of conformational changes facilitated by ATP binding and hydrolysis. Progression through the chaperone cycle requires release of p50(Cdc37)(More)
Intracellular accumulation of glycerol is essential for yeast cells to survive hyperosmotic stress. Upon hyperosmotic stress the gene expression of enzymes in the glycerol pathway is strongly induced. Recently, however, it was shown that this gene-expression response is not essential for survival of an osmotic shock [Mettetal JT et al. (2008) Science 319:(More)
A protein kinase that is activated by calcium and cis-unsaturated fatty acids has been characterized from oat (Avena sativa L.) root plasma membranes. The kinase phosphorylates a synthetic peptide with a motif (-R-T-L-S-) that can be phosphorylated by both protein kinase C (PKC) and calcium-dependent protein kinase (CDPK)-type kinases. Calphostin C and(More)