Marco Retzlaff

Learn More
The chaperone Hsp90 is an ATP-dependent, dimeric molecular machine regulated by several cochaperones, including inhibitors and the unique ATPase activator Aha1. Here, we analyzed the mechanism of the Aha1-mediated acceleration of Hsp90 ATPase activity and identified the interaction surfaces of both proteins using multidimensional NMR techniques. For maximum(More)
Heat shock protein 90 (Hsp90) is an abundant, dimeric ATP-dependent molecular chaperone, and ATPase activity is essential for its in vivo functions. S-nitrosylation of a residue located in the carboxy-terminal domain has been shown to affect Hsp90 activity in vivo. To understand how variation of a specific amino acid far away from the amino-terminal(More)
Eukaryotic cells must contend with a continuous stream of misfolded proteins that compromise the cellular protein homeostasis balance and jeopardize cell viability. An elaborate network of molecular chaperones and protein degradation factors continually monitor and maintain the integrity of the proteome. Cellular protein quality control relies on three(More)
A number of genes of the developmental gene hierarchy in Drosophila encode transcription factors containing Cys2His2 zinc finger domains as DNA-binding motifs. To learn more about the evolution of these genes, it is necessary to clone the homologs, or more correctly the orthologs, from different species. Using PCR, we were able to obtain apparently(More)
In eukaryotes, the essential dimeric molecular chaperone Hsp90 is required for the activation and maturation of specific substrates such as steroid hormone receptors, tyrosine kinases and transcription factors. Hsp90 is involved in the establishment of cancer and has become an attractive target for drug design. Here we present a structural characterization(More)
Hepadnaviruses are DNA viruses that replicate by protein-primed reverse transcription, employing a specialized reverse transcriptase (RT), P protein. DNA synthesis from the pregenomic RNA is initiated by binding of P to the epsilon signal. Using epsilon as template and a Tyr-residue for initiation, the RT synthesizes a DNA oligo (priming) as primer for(More)
The tumor suppressor protein p53 is often referred to as the guardian of the genome. In the past, controversial findings have been presented for the role of the C-terminal regulatory domain (RD) of p53 as both a negative regulator and a positive regulator of p53 activity. However, the underlying mechanism remained enigmatic. To understand the function of(More)
A genetic algorithm (GA) was applied for the optimisation of an enzyme assay composition respectively the enzyme activity of a recombinantly produced FADH(2)-dependent halogenating enzyme. The examined enzyme belongs to the class of halogenases and is capable to halogenate tryptophan regioselective in position 5. Therefore, the expressed trp-5-halogenase(More)
  • 1