Learn More
Stroke causes CNS injury associated with strong fast microglial activation as part of the inflammatory response. In rat models of stroke, sulphonylurea receptor blockade with glibenclamide reduced cerebral edema and infarct volume. We postulated that glibenclamide administered during the early stages of stroke might foster neuroprotective microglial(More)
Single and double-labeling immunocytochemistry has been used to learn about the localization, distribution, and possible relationship between beta-amyloid protein (Abeta) deposition and tau hyperphosphorylation in the canine cerebral cortex with age. Behavioral impairment, as reported by the owners and tested in all dogs, correlated with increased Abeta(More)
In the search for appropriate models for Alzheimer's disease (AD) involving animals other than rodents, several laboratories are working with animals that naturally develop cognitive dysfunction. Among the animals tested, dogs are quite unique in helping to elucidate the cascade of events that take place in brain amyloid-beta (Aβ)deposition aging, and(More)
The aged dog is considered a promising model for examining molecular and cellular processes involved in a variety of human neurological disorders. By using the canine counterpart of senile dementia of the Alzheimer's type (ccSDAT), we investigated the specific vulnerability of the gamma-aminobutyric acid (GABA) cortical subset of interneurons, characterized(More)
In rat brain, calcification associated with excitotoxicity has been proposed to play a protective role, whereas in human brain, nonartherosclerotic calcification is present in several pathological conditions without any clear significance. To determine if calcification can be viewed as a protective step of calcium homeostasis during chronic and acute(More)
Pharmacological modulation of ATP-sensitive potassium channels has become a promising new therapeutic approach for the treatment of neurodegenerative diseases due to their role in mitochondrial and cellular protection. For instance, diazoxide, a well-known ATP-sensitive potassium channel activator with high affinity for mitochondrial component of the(More)
Positive and negative reinforcing systems are part of the mechanism of drug dependence. Drugs with abuse potential may change the manner of response to negative emotional stimuli, activate positive emotional reactions and possess primary reinforcing properties. Catecholaminergic and peptidergic processes are of importance in these mechanisms. Current(More)
Diagnosis of dementia of the Alzheimer's type depends on clinical criteria and exclusion of other disorders because, at this time, a validated biological marker, aside from histological brain examination, remains to be established. The canine counterpart of senile dementia of the Alzheimer type (ccSDAT) is considered a promising model for examining(More)
Like humans, canines develop with aging beta-amyloid (Abeta) plaques and a progressive cognitive deficit on tasks similar to those used in diagnosis and follow-up of Alzheimer's disease. Owing to that, dogs are quite unique to investigate the early events taking place in the diffuse Abeta plaque maturation and its relationship with cognitive deficit. The(More)
Microglial cells involved in the pathogenesis of many neurodegenerative diseases acquire the features of cytotoxic and phagocytic cells in response to certain pathogens and inflammatory signals. K(ATP) channels are energy sensors of ATP availability that link the cell's metabolic state to its membrane excitability. In pancreatic beta cells, they promote(More)