Learn More
This paper presents the high-level COCONUT architecture of an optical access network based on coherent technology, supporting ultra-dense Wavelength Division Multiplexing (WDM). The COCONUT network should allow for seamless evolution from present PON architectures, but also support new emerging applications such as mobile back-haul and front-haul. Coherent(More)
In this paper we present and critically discuss different wavelength division multiplexing passive optical network (WDM-PON) architectures compatible with pre-existing gigabit PON (GPON) infrastructures. The concurrent use of the trunk fiber permits a hitless evolution from an existing time division multiplexing optical access network to a point-to-point(More)
Direct-detection of differential phase shifted keying (DPSK) optical signals is implemented either by ad hoc optical filtering or one-bit delayed optical interferometers. We show a coherent receiver where the filtering is performed in the electrical domain after down-converting the incoming signal to the baseband or to an intermediate frequency. This can be(More)
We report about a Line of Sight Optical Wireless Communication (LoS OWC) system aided by a simplified Visible Light localization algorithm for tracking purposes. We show experimentally that by combining the LoS OWC system with the localization algorithm it is possible to provide a gross datarate exceeding 300Mb/s over a 90° illumination angle by using a RGB(More)
We propose a novel line coding combination (Inverse RZ coding in downlink and RZ in uplink) that extends the reach of WDM Passive Optical Networks based on Reflective SOAs with no in-line amplification. We achieved full downstream remodulation even when feeding the reflective SOA with power levels as low as -35 dBm, thus increasing the system power budget.(More)
We report enhanced 10 Gb/s operation of directly modulated bandwidth-limited reflective semiconductor optical amplifiers. By using a single suitable arrayed waveguide grating we achieve simultaneously WDM demultiplexing and optical equalization. Compared to previous approaches, the proposed system results significantly more tolerant to seeding wavelength(More)
We demonstrate experimentally a novel type of coherent low cost Gigabit-to-the-User Ultra-Dense-Wavelength Division Multiplexing (UD-WDM) PON, featuring 6.25 GHz channel spacing and long reach. Polarization-independent coherent detection is achieved by exploiting a novel scheme which requires only a 3 × 3 coupler, three photodiodes, basic analogue(More)
The results of the analysis of the COCONUT (“COst-effective COhereNt Ultra-dense-WDM-PON for λ-to-the-user access”) project architectures with respect to their associated cost, power consumption and migration scenarios are presented. COCONUT develops udWDM access with simplified coherent technology to allow for node consolidation,(More)