Marco Guermandi

Learn More
Electrical impedance tomography (EIT) is an imaging technology based on impedance measurements. To retrieve meaningful insights from these measurements, EIT relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of current flows therein. The nonhomogeneous and anisotropic electric properties(More)
A four-shell head phantom has been built and characterized. Its structure is similar to that of nonhomogeneous concentric shell domains used by numerical solvers that better approximate current distribution than phantoms currently used to validate electrical impedance tomography systems. Each shell represents a head tissue, namely, skin, skull,(More)
The paper presents a novel Driving Right Leg (DgRL) circuit designed to mitigate the effect of common mode signals deriving, say, from power line interferences. The DgRL drives the isolated ground of the instrumentation towards a voltage which is fixed with respect to the common mode potential on the subject, therefore minimizing common mode voltage at the(More)
We present a system for the acquisition of EEG signals based on active electrodes and implementing a Driving Right Leg circuit (DgRL). DgRL allows for single-ended amplification and analog-to-digital conversion, still guaranteeing a common mode rejection in excess of 110 dB. This allows the system to acquire high-quality EEG signals essentially removing(More)
The IC presented integrates the front-end for EEG and Electrical Impedance Tomography (EIT) acquisition on the electrode, together with electrode-skin contact impedance monitoring and EIT current generation, so as to improve signal quality and integration of the two techniques for brain imaging applications. The electrode size is less than 2 cm(2) and only(More)
  • 1