Learn More
This paper proposes a novel and simple local neural classifier for the recognition of mental tasks from on-line spontaneous EEG signals. The proposed neural classifier recognizes three mental tasks from on-line spontaneous EEG signals. Correct recognition is around 70%. This modest rate is largely compensated by two properties, namely low percentage of(More)
There is a growing interest in the use of physiological signals for communication and operation of devices for the severely motor disabled as well as for healthy people. A few groups around the world have developed brain-computer interfaces (BCIs) that rely upon the recognition of motor-related tasks (i.e., imagination of movements) from on-line EEG(More)
  • 1