Marco Emanuele Favretto

Learn More
Silica nanoparticles (MSNs) with a highly ordered mesoporous structures (103A) with cubic Im3 m have been synthesized using triblock copolymers with high poly(alkylene oxide) (EO) segments in acid media. The produced nanoparticles displayed large specific surface area (approximately 765 cm(2)/g) with an average particles size of 120 nm. The loading(More)
Owing to restricted access of pharmacological agents into the brain due to blood brain barrier (BBB) there is a need: 1. to develop a more representative 3-D-co-culture model of tumor-BBB interaction to investigate drug and nanoparticle transport into the brain for diagnostic and therapeutic evaluation. 2. to address the lack of new alternative methods to(More)
RNA has enormous potential as a therapeutic, yet, the successful application depends on efficient delivery strategies. In this study, we demonstrate that a designed artificial viral coat protein, which self-assembles with DNA to form rod-shaped virus-like particles (VLPs), also encapsulates and protects mRNA encoding enhanced green fluorescent protein(More)
Viruses are among the simplest biological systems and are highly effective vehicles for the delivery of genetic material into susceptible host cells. Artificial viruses can be used as model systems for providing insights into natural viruses and can be considered a testing ground for developing artificial life. Moreover, they are used in biomedical and(More)
Polymer-based gene delivery systems have enormous potential in biomedicine, but their efficiency is often limited by poor biocompatibility. Poly(methacrylate)s (PMAs) are an interesting class of polymers which allow to explore structure-activity relationships of polymer functionalities for polyplex formation in oligonucleotide delivery. Here, we synthesized(More)
This paper reports an easy and highly reproducible preparation route, using self-emulsifying technology, for an orally administered high quality magnetically responsive drug delivery system. Hydrophobic iron oxide nanoparticles of about 5 nm in diameter were prepared and incorporated into the lipid core of the produced oil droplets of a self-nanoemulsifying(More)
Water soluble CdS nanoparticles were synthesized by reacting CdCl2 with sodium thiosulphate solutions as sulphur precursor. The facile one-pot synthetic route produced tunable (2-10 nm) high quality QDs with narrow particle size distribution and enhanced quantum yields (QY).
Human red blood cells (RBCs) are emerging as a highly biocompatible microparticulate drug delivery system. So far, drugs have commonly been loaded into freshly isolated RBCs using rather disruptive methods based on hypotonic shock, and assessment of damage was restricted to hemolysis. Here, we investigated loading of RBCs from blood bank units with enzymes(More)
To investigate the arsonoliposome effect on medulloblastoma cells (VC312Rs) related to uptake, endocytotic mechanism and cell viability. VC312R viability in presence of either arsonoliposomes or stealth liposomes was studied using MTT assay for 1–4 days. Fibroblasts (3T3) were used as control. Apoptosis was studied for 2 h, 5 h and 24 h. Bodipy-labelled(More)
The implementation of efficient strategies for cellular delivery is the most significant hurdle in the development of oligonucleotide and protein-based nanomedicines. Unlike small molecule drugs that enter cells by virtue of hydrophobicity or by being substrates of transporters, these macromolecules lack the capacity to cross the plasma membrane in a(More)