Learn More
Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals. In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization. Ant(More)
This paper introduces ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In ACS, a set of cooperating agents called ants cooperate to find good solutions to TSPs. Ants cooperate using an indirect form of communication mediated by pheromone they deposit on the edges of the TSP graph while building(More)
An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call ant system (AS). We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation, and the use of a constructive greedy heuristic.(More)
Abstract An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation, and the use of a constructive greedy heuristic.(More)
This paper introduces AntNet a novel approach to the adaptive learning of routing tables in communications networks AntNet is a distributed mobile agents based Monte Carlo system that was inspired by recent work on the ant colony metaphor for solving optimization problems AntNet s agents concurrently explore the network and exchange collected information(More)
This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic biological findings on real ants are reviewed and their(More)
Research on a new metaheuristic for optimization is often initially focused on proof-of-concept applications. It is only after experimental work has shown the practical interest of the method that researchers try to deepen their understanding of the method’s functioning not only through more and more sophisticated experiments but also by means of an effort(More)
In this paper we present an extension of ant colony optimization (ACO) to continuous domains. We show how ACO, which was initially developed to be a metaheuristic for combinatorial optimization, can be adapted to continuous optimization without any major conceptual change to its structure. We present the general idea, implementation, and results obtained.(More)